Using Predictive Model for Strategic Control of Multi-reservoir System Storage Capacity

dc.contributor.authorMarton, Danielcs
dc.contributor.authorMenšík, Pavelcs
dc.contributor.authorStarý, Milošcs
dc.coverage.issue119cs
dc.coverage.volume2015cs
dc.date.issued2015-09-02cs
dc.description.abstractThe paper will describe the algorithm based on adaptive optimization of multi reservoir control, which the medium-term water flow predictions into the reservoirs for several months ahead repeatedly use. Hydrological prediction model was created using ANN method and values of control outflows are searching by optimization based on evolutionary algorithms optimization technique. The objective function was descripted as the sum of squares deviations between required and actual controlled water outflow from reservoirs where objective function is minimized. The algorithm of adaptive control is applied to the operation storage control of selected reservoir system, which open water reservoirs Vir and Brno are created.en
dc.description.abstractThe paper will describe the algorithm based on adaptive optimization of multi reservoir control, which the medium-term water flow predictions into the reservoirs for several months ahead repeatedly use. Hydrological prediction model was created using ANN method and values of control outflows are searching by optimization based on evolutionary algorithms optimization technique. The objective function was descripted as the sum of squares deviations between required and actual controlled water outflow from reservoirs where objective function is minimized. The algorithm of adaptive control is applied to the operation storage control of selected reservoir system, which open water reservoirs Vir and Brno are created.en
dc.formattextcs
dc.format.extent994-1002cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationProcedia Engineering. 2015, vol. 2015, issue 119, p. 994-1002.en
dc.identifier.doi10.1016/j.proeng.2015.08.991cs
dc.identifier.issn1877-7058cs
dc.identifier.orcid0000-0003-1073-5636cs
dc.identifier.orcid0000-0003-4697-5033cs
dc.identifier.orcid0000-0003-0557-1577cs
dc.identifier.other116317cs
dc.identifier.researcheridAAD-4380-2019cs
dc.identifier.researcheridU-3553-2017cs
dc.identifier.scopus54791282100cs
dc.identifier.scopus54791204100cs
dc.identifier.scopus33467866300cs
dc.identifier.urihttp://hdl.handle.net/11012/69348
dc.language.isoencs
dc.publisherElsevier Science Publisherscs
dc.relation.ispartofProcedia Engineeringcs
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S1877705815026612cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1877-7058/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectMulti-reservoir Systemen
dc.subjectActive Storage Capacityen
dc.subjectStrategy Controlen
dc.subjectPrediction Modelen
dc.subjectAdaptivityen
dc.subjectOptimizationen
dc.subjectArtificial Neural Networken
dc.subjectMulti-reservoir System
dc.subjectActive Storage Capacity
dc.subjectStrategy Control
dc.subjectPrediction Model
dc.subjectAdaptivity
dc.subjectOptimization
dc.subjectArtificial Neural Network
dc.titleUsing Predictive Model for Strategic Control of Multi-reservoir System Storage Capacityen
dc.title.alternativeUsing Predictive Model for Strategic Control of Multi-reservoir System Storage Capacityen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-116317en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:46:27en
sync.item.modts2025.10.14 09:33:17en
thesis.grantorVysoké učení technické v Brně. Fakulta stavební. Ústav vodního hospodářství krajinycs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S1877705815026612main.pdf
Size:
953.36 KB
Format:
Adobe Portable Document Format
Description:
1s2.0S1877705815026612main.pdf