Diagnostic oscilloscope with artificial intelligence

but.event.date29.04.2025cs
but.event.titleSTUDENT EEICT 2025cs
dc.contributor.authorKnob, Martin
dc.contributor.authorKufa, Jan
dc.date.accessioned2025-07-30T10:00:55Z
dc.date.available2025-07-30T10:00:55Z
dc.date.issued2025cs
dc.description.abstractThis paper describes the design and implementation of an oscilloscope that can recognise individual measurement signals, communication protocols, and buses based on machine learning (ML), a subset of artificial intelligence (AI) . The oscilloscope is compact and fully portable. The device is powered by a battery, making it energy self-sufficient. The oscilloscope data can be visualised with a smartphone using the Scoppy app. The Raspberry Pi Pico W microcontroller can be connected via Wi-Fi or USB. The processing of the measured signals is not done in real time, but from exported data using MATLAB . A graphical user interface (GUI) has been designed in MATLAB for data processing using ML .en
dc.formattextcs
dc.format.extent142-145cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings I of the 31st Conference STUDENT EEICT 2025: General papers. s. 142-145. ISBN 978-80-214-6321-9cs
dc.identifier.isbn978-80-214-6321-9
dc.identifier.urihttps://hdl.handle.net/11012/255264
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings I of the 31st Conference STUDENT EEICT 2025: General papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_1.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectOscilloscopeen
dc.subjectmicrocontrolleren
dc.subjectmachine learningen
dc.subjectsignalen
dc.subjectprotocolen
dc.subjectbusen
dc.titleDiagnostic oscilloscope with artificial intelligenceen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
142-Knob.pdf
Size:
813.56 KB
Format:
Adobe Portable Document Format