Review of clustering methods used in data-driven housing market segmentation

dc.contributor.authorSkovajsa, Štěpáncs
dc.coverage.issue3cs
dc.coverage.volume31cs
dc.date.issued2023-09-08cs
dc.description.abstractThere was already a huge effort spent to prove the existence of housing market segments, how to utilize them to improve valuation accuracy, and gain knowledge about the inner structure of the whole superior housing market. Accordingly, many different methods on the topic were explored, but there is still no universal framework known. The aim of this article is to review some previous studies on data-driven housing market segmentation methods with a focus on clustering methods and their ability to capture market segments with respect to the shape of clusters, fuzziness, and hierarchical structure.en
dc.formattextcs
dc.format.extent66-74cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationReal Estate Management and Valuation. 2023, vol. 31, issue 3, p. 66-74.en
dc.identifier.doi10.2478/remav-2023-0022cs
dc.identifier.issn1733-2478cs
dc.identifier.orcid0000-0001-7169-8125cs
dc.identifier.other184573cs
dc.identifier.urihttp://hdl.handle.net/11012/214454
dc.language.isoencs
dc.publisherPolish Real Estate Scientific Societycs
dc.relation.ispartofReal Estate Management and Valuationcs
dc.relation.urihttps://www.remv-journal.com/Review-of-clustering-methods-used-in-data-driven-housing-market-segmentation,162812,0,2.htmlcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1733-2478/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectclustering algorithmsen
dc.subjecthousing market analysisen
dc.subjecthousing market segmentationen
dc.subjectdata-driven segmentationen
dc.titleReview of clustering methods used in data-driven housing market segmentationen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-184573en
sync.item.dbtypeVAVen
sync.item.insts2024.03.11 10:46:02en
sync.item.modts2024.03.11 10:13:44en
thesis.grantorVysoké učení technické v Brně. Ústav soudního inženýrství. Odbor znalectví ve stavebnictví a oceňování nemovitostícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.2478_remav20230022.pdf
Size:
338.88 KB
Format:
Adobe Portable Document Format
Description:
10.2478_remav20230022.pdf