Počítání vozidel ve statickém obraze
Loading...
Date
Authors
ORCID
Advisor
Referee
Mark
A
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta informačních technologií
Abstract
Hlavním cílem této práce bylo porovnání různých moderních přístupů k počítání vozidel pomocí odhadu hustoty. Celkem byly porovnány čtyři modely konvolučních neuronových sítí - Counting CNN, Hydra CNN, Perspective-Aware CNN a Multi-column CNN. Vyhodnocení natrénovaných modelů bylo provedeno na třech různých datasetech. Nejpřesnějších výsledků na všech datasetech dosáhl model Perspective-Aware CNN. Na datasetu PUCPR+ dosáhl hodnoty Mean Absolute Error 2,86, čímž prokázal, že jeho použití u problému počítání vozidel je vhodné.
The main goal of this thesis was to compare different approaches to vehicle counting by density estimation. Four convolutional neural networks were tested - Counting CNN, Hydra CNN, Perspective-Aware CNN and Multi-column CNN. The evaluation of these models was done on three different datasets. The Perspective-aware CNN has achieved the most accurate results across all datasets. This model has reached 2.86 Mean Absolute Error on the PUCPR+ dataset, proving that it is the most suitable for the vehicle counting problem.
The main goal of this thesis was to compare different approaches to vehicle counting by density estimation. Four convolutional neural networks were tested - Counting CNN, Hydra CNN, Perspective-Aware CNN and Multi-column CNN. The evaluation of these models was done on three different datasets. The Perspective-aware CNN has achieved the most accurate results across all datasets. This model has reached 2.86 Mean Absolute Error on the PUCPR+ dataset, proving that it is the most suitable for the vehicle counting problem.
Description
Citation
JELÍNEK, Z. Počítání vozidel ve statickém obraze [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2020.
Document type
Document version
Date of access to the full text
Language of document
cs
Study field
Informační technologie
Comittee
doc. Ing. Martin Čadík, Ph.D. (předseda)
doc. Ing. Jiří Jaroš, Ph.D. (místopředseda)
Ing. David Bařina, Ph.D. (člen)
doc. Ing. Radek Burget, Ph.D. (člen)
doc. Mgr. Lukáš Holík, Ph.D. (člen)
Date of acceptance
2020-07-08
Defence
Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázku oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm velmi dobře. Otázky u obhajoby: Jak byste využil vámi popisované metody v praxi (v jakých aplikacích)? Testované architektury jsou z původních článků, nebo jste je upravoval? Měl jste k dispozici implementace uvedených sítí? Musel jste některé sítě i implementovat a trénovat? Jsou Vaše výsledky lepší než v původních článcích?
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení