The pressure gradient in the human respiratory tract

Loading...
Thumbnail Image

Authors

Chovancová, Michaela
Elcner, Jakub

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

EDP Sciences
Altmetrics

Abstract

Respiratory airways cause resistance to air flow during inhalation and exhalation. The pressure gradient is necessary to transport the air from the mount (or nose) to pulmonary alveoli. The knowledge of pressure gradient (i.e. respiratory airways resistance) is also needed to solve the question of aerosol deposition in the human respiratory tract. The obtained data will be used as boundary conditions for CFD simulations of aerosol transport. Understanding of aerosol transport in the human lungs can help us to determine the health hazard of harmful particles. On the other hand it can be used to set the conditions for transport of medication to the desirable place. This article deals with the description of the mathematical equations defining the pressure gradient and resistance in the bronchial three and describes the geometry used in the calculation.
Respiratory airways cause resistance to air flow during inhalation and exhalation. The pressure gradient is necessary to transport the air from the mount (or nose) to pulmonary alveoli. The knowledge of pressure gradient (i.e. respiratory airways resistance) is also needed to solve the question of aerosol deposition in the human respiratory tract. The obtained data will be used as boundary conditions for CFD simulations of aerosol transport. Understanding of aerosol transport in the human lungs can help us to determine the health hazard of harmful particles. On the other hand it can be used to set the conditions for transport of medication to the desirable place. This article deals with the description of the mathematical equations defining the pressure gradient and resistance in the bronchial three and describes the geometry used in the calculation.

Description

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 2.0 Generic
Citace PRO