Detailed spray analysis of airblast atomization of various fuels in a reacting environment

dc.contributor.authorKardos, Réka Annacs
dc.contributor.authorRácz, Erikacs
dc.contributor.authorMalý, Milancs
dc.contributor.authorJedelský, Jancs
dc.contributor.authorJózsa, Viktorcs
dc.coverage.issue1cs
dc.coverage.volume227cs
dc.date.accessioned2025-03-25T17:40:12Z
dc.date.available2025-03-25T17:40:12Z
dc.date.issued2024-08-01cs
dc.description.abstractUnderstanding spray evolution in a reacting environment is critical to designing advanced, clean combustion systems. The processes in the upstream region determine flame shape, stability, ignition characteristics, pollutant emission, and combustion efficiency. The developed spray is never achieved in combustion since the early regions feature primary and secondary atomization, while droplets evaporate as they approach the flame. Consequently, there is no thermodynamic equilibrium before the flame front. The principal goal of this paper is to provide detailed information to model developers on various sprays measured by a Phase Doppler Anemometer; the processed measurement data is available as supplementary material, while the raw data will be provided upon request. Four different fuels were tested: diesel fuel, aviation kerosene type JP-8, biodiesel, and a 50 % biodiesel-diesel blend by volume. The plain -jet airblast atomizer was tested at four atomization gauge pressures (0.3, 0.45, 0.6, 0.75 barg). Therefore, sixteen different sprays were measured along one spray diameter at each of four downstream distances of 15, 25, 35, and 45 mm, measured from the nozzle tip. The paper details the droplet size distribution, droplet axial velocity, fluctuations, and correlation between size and velocity to facilitate a comprehensive understanding of liquid fuel sprays. This latter measure helps identify the overshooting phenomenon, i.e., localizing the regions where the large droplets move faster than the gas phase.en
dc.formattextcs
dc.format.extent1-12cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER. 2024, vol. 227, issue 1, p. 1-12.en
dc.identifier.doi10.1016/j.ijheatmasstransfer.2024.125548cs
dc.identifier.issn1879-2189cs
dc.identifier.orcid0000-0002-1193-519Xcs
dc.identifier.orcid0000-0002-1268-8434cs
dc.identifier.other188454cs
dc.identifier.researcheridAAY-7288-2021cs
dc.identifier.researcheridA-9224-2013cs
dc.identifier.scopus57189715785cs
dc.identifier.scopus23090535800cs
dc.identifier.urihttps://hdl.handle.net/11012/250177
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFERcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S001793102400379Xcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1879-2189/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectSprayen
dc.subjectAirblast atomizeren
dc.subjectPhase Doppler Anemometryen
dc.subjectReactingen
dc.subjectBiofuelen
dc.subjectEvaporationen
dc.titleDetailed spray analysis of airblast atomization of various fuels in a reacting environmenten
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/GA0/GA/GA23-07722Scs
sync.item.dbidVAV-188454en
sync.item.dbtypeVAVen
sync.item.insts2025.03.25 18:40:12en
sync.item.modts2025.03.25 13:33:12en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. EÚ-odbor termomechaniky a techniky prostředícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S001793102400379Xmain.pdf
Size:
7.56 MB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S001793102400379Xmain.pdf