Inspection Based Probabilistic Modeling of Fatigue Crack Progression

Loading...
Thumbnail Image

Authors

Krejsa, Martin
Kala, Zdeněk
Seitl, Stanislav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

Attention to the fatigue cracks in steel structures and bridges has been paid for a long time. Fatigue crack damage depends on a number of stress range cycles. Three sizes are important for the characteristics of the propagation of fatigue cracks - the initial size, detectable size and acceptable size. The theoretical model of fatigue crack progression in paper is based on a linear fracture mechanics. When determining the required degree of reliability, it is possible to specify the time of the first inspection of the construction which will focus on the fatigue damage. Using a conditional probability, times for subsequent inspections can be determined. For probabilistic calculation of fatigue crack progression was used the original and new probabilistic methods - the Direct Optimized Probabilistic Calculation ("DOProC"), which uses a purely numerical approach without any simulation or approximation techniques. The algorithm of the probabilistic calculation was applied in the FCProbCalc code ("Fatigue Crack Probabilistic Calculation"), using which is possible to carry out the probabilistic modelling of propagation of fatigue cracks in a user friendly environment very effectively.
Attention to the fatigue cracks in steel structures and bridges has been paid for a long time. Fatigue crack damage depends on a number of stress range cycles. Three sizes are important for the characteristics of the propagation of fatigue cracks - the initial size, detectable size and acceptable size. The theoretical model of fatigue crack progression in paper is based on a linear fracture mechanics. When determining the required degree of reliability, it is possible to specify the time of the first inspection of the construction which will focus on the fatigue damage. Using a conditional probability, times for subsequent inspections can be determined. For probabilistic calculation of fatigue crack progression was used the original and new probabilistic methods - the Direct Optimized Probabilistic Calculation ("DOProC"), which uses a purely numerical approach without any simulation or approximation techniques. The algorithm of the probabilistic calculation was applied in the FCProbCalc code ("Fatigue Crack Probabilistic Calculation"), using which is possible to carry out the probabilistic modelling of propagation of fatigue cracks in a user friendly environment very effectively.

Description

Citation

Procedia Engineering. 2016, vol. 142, issue 1, p. 146-153.
https://www.sciencedirect.com/science/article/pii/S1877705816003891

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO