A numerical study on effects of current density distribution, turbulence, and magnetohydrodynamics (MHD) on electrolytic gas flow with application to alkaline water electrolysis (AWE)

dc.contributor.authorKarimi-Sibaki, Ebrahimcs
dc.contributor.authorVakhrushev, Alexandercs
dc.contributor.authorWu, Menghuaics
dc.contributor.authorBoháček, Jancs
dc.contributor.authorKharicha, Abdellahcs
dc.coverage.issue8cs
dc.coverage.volume208cs
dc.date.accessioned2025-02-28T13:53:56Z
dc.date.available2025-02-28T13:53:56Z
dc.date.issued2024-07-20cs
dc.description.abstractA three-phase Eulerian model is proposed to investigate the induced flow due to the generation of gas bubbles between two parallel plates without forced convection with application to alkaline water electrolysis (AWE). Earlier models, assuming a laminar regime, accurately predicted the multiphase flow near electrodes but struggled to calculate bulk liquid electrolyte flow away from them. Herein, we study the influences of electric current density distribution, turbulence effects, and the interaction between flow and the magnetic field known as magnetohydrodynamics (MHD). Based on our modeling results, the traditional method using an averaged uniform current density along electrodes (e.g. here 2000 A m 2) is feasible, as incorporating calculated nonuniform current distribution minimally affects the multiphase velocity field. The Lorentz force, originating from flow interaction with the (self-induced) magnetic field, is negligible compared to forces like drag or bubble dispersion. Consequently, MHD effects only become relevant upon introducing an external magnetic field. Including turbulence in the model, being minor in magnitude but non-negligible, significantly improves the predicted velocity profile. Modeling results are validated against an experiment.en
dc.formattextcs
dc.format.extent731-739cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationCHEMICAL ENGINEERING RESEARCH & DESIGN. 2024, vol. 208, issue 8, p. 731-739.en
dc.identifier.doi10.1016/j.cherd.2024.07.042cs
dc.identifier.issn0263-8762cs
dc.identifier.orcid0000-0003-3319-4254cs
dc.identifier.other189326cs
dc.identifier.researcheridC-2078-2018cs
dc.identifier.scopus55213548700cs
dc.identifier.urihttps://hdl.handle.net/11012/250082
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofCHEMICAL ENGINEERING RESEARCH & DESIGNcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0263876224004349cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0263-8762/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectAlkaline Water Electrolysis (AWE)en
dc.subjectElectrolytic gas flowen
dc.subjectThree-phase Eulerian modelen
dc.subjectMagnetohydrodynamics (MHD)en
dc.subjectNumerical simulationen
dc.subjectMultiphase velocity fielden
dc.titleA numerical study on effects of current density distribution, turbulence, and magnetohydrodynamics (MHD) on electrolytic gas flow with application to alkaline water electrolysis (AWE)en
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-189326en
sync.item.dbtypeVAVen
sync.item.insts2025.02.28 14:53:56en
sync.item.modts2025.02.28 13:32:02en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Laboratoř přenosu tepla a prouděnícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S0263876224004349main.pdf
Size:
4.37 MB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S0263876224004349main.pdf