Integrated method utilizing graph theory and fuzzy logic for safety and reliability assessment of airborne systems

Loading...
Thumbnail Image
Date
2019
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta strojního inženýrství
Altmetrics
Abstract
This paper presents integrated algorithm for airborne system safety and reliability assessment. In general aviation (mostly up to EASA CS-23) and non-military unmanned aerial vehicles industry, safety and reliability assessment process still relays almost exclusively on human judgment. Recommended practices define processes for system modelling and safety assessing are based on analyst understanding of a particular system. That is difficult and time-consuming process. Commercial computation aids are extremely expensive with restricted (or closed) access to the solution algorithms. Together with this problem, rapid development of modern airborne systems, their increasing complexity, elevates level of interconnection. Therefore, safety and reliability analyses have to continuously evolve and adapt to the extending complexity. Growing expansion brings in the field of unnamed aerial vehicles systems which consist of items without relevant reliability testing. Presented algorithm utilizes graph theory and fuzzy logic in order to develop integrated computerized mean for reliability analysis of sophisticated, highly interconnected airborne systems. Through the usage of graph theory, it is possible to create model of particular systems and its sub-systems in the form of universal data structure. Algorithm is conceived as fuzzy expert system, that emulates decision making of a human expert. That brings opportunity to partially quantify system attributes and criticality. Criticality evaluation increases level of assessment correlation with real state of system and its attributes.
Description
Citation
13th Research and Education in Aircraft Design: Conference proceedings. s. 32-44. ISBN 978-80-214-5696-9
http://www.lu.fme.vutbr.cz/read2018cz/
Document type
Peer-reviewed
Document version
Publishers's version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO