Simulation and Diagnostics of Plasma Chemical Processes during Microwave Plasma Synthesis of Graphene Nanosheets form Ethanol

Loading...
Thumbnail Image

Authors

Kudrle, Vít
Šnírer, Miroslav
Toman, Jozef
Kubečka, Martin
Jurmanová, Jana
Jašek, Ondřej
Krčma, František

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Tanger
Altmetrics

Abstract

Plasma synthesis by ethanol decomposition in microwave atmospheric torch is a simple, efficient, single-step scalable method suitable for volume production of graphene nanosheets. In our work, we studied influence of microwave power on several plasma parameters (e.g. gas temperature, concentration of active species) by optical emission spectroscopy (OES), Fourier transform infrared spectrometry (FTIR) and mass spectrometry (MS) to better understand the process of precursor decomposition and graphene formation in the gas phase. We observed significant change in kinetics and influence of input power on ethanol decomposition routes. Results were compared with theoretical model comprising hydrodynamics, plasma, heat transfer and chemical kinetics.
Plasma synthesis by ethanol decomposition in microwave atmospheric torch is a simple, efficient, single-step scalable method suitable for volume production of graphene nanosheets. In our work, we studied influence of microwave power on several plasma parameters (e.g. gas temperature, concentration of active species) by optical emission spectroscopy (OES), Fourier transform infrared spectrometry (FTIR) and mass spectrometry (MS) to better understand the process of precursor decomposition and graphene formation in the gas phase. We observed significant change in kinetics and influence of input power on ethanol decomposition routes. Results were compared with theoretical model comprising hydrodynamics, plasma, heat transfer and chemical kinetics.

Description

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO