Advantageous Description of Short Fatigue Crack Growth Rates in Austenitic Stainless Steels with Distinct Properties

dc.contributor.authorTrávníček, Lukášcs
dc.contributor.authorKuběna, Ivocs
dc.contributor.authorMazánová, Veronikacs
dc.contributor.authorVojtek, Tomášcs
dc.contributor.authorPolák, Jaroslavcs
dc.contributor.authorHutař, Pavelcs
dc.contributor.authorŠmíd, Miroslavcs
dc.coverage.issue3cs
dc.coverage.volume11cs
dc.date.accessioned2021-12-16T11:54:56Z
dc.date.available2021-12-16T11:54:56Z
dc.date.issued2021-03-01cs
dc.description.abstractIn this work two approaches to the description of short fatigue crack growth rate under large-scale yielding condition were comprehensively tested: (i) plastic component of the J-integral and (ii) Polak model of crack propagation. The ability to predict residual fatigue life of bodies with short initial cracks was studied for stainless steels Sanicro 25 and 304L. Despite their coarse microstructure and very different cyclic stress-strain response, the employed continuum mechanics models were found to give satisfactory results. Finite element modeling was used to determine the J-integrals and to simulate the evolution of crack front shapes, which corresponded to the real cracks observed on the fracture surfaces of the specimens. Residual fatigue lives estimated by these models were in good agreement with the number of cycles to failure of individual test specimens strained at various total strain amplitudes. Moreover, the crack growth rates of both investigated materials fell onto the same curve that was previously obtained for other steels with different properties. Such a "master curve" was achieved using the plastic part of J-integral and it has the potential of being an advantageous tool to model the fatigue crack propagation under large-scale yielding regime without a need of any additional experimental data.en
dc.formattextcs
dc.format.extent1-20cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMetals. 2021, vol. 11, issue 3, p. 1-20.en
dc.identifier.doi10.3390/met11030475cs
dc.identifier.issn2075-4701cs
dc.identifier.other172857cs
dc.identifier.urihttp://hdl.handle.net/11012/203244
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofMetalscs
dc.relation.urihttps://www.mdpi.com/2075-4701/11/3/475cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2075-4701/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectshort fatigue cracken
dc.subjectlarge scale yieldingen
dc.subjectlow cycle fatigueen
dc.subjectJ-integralen
dc.subjectaustenitic stainless steelen
dc.subjectresidual lifetime predictionen
dc.titleAdvantageous Description of Short Fatigue Crack Growth Rates in Austenitic Stainless Steels with Distinct Propertiesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-172857en
sync.item.dbtypeVAVen
sync.item.insts2021.12.16 12:54:56en
sync.item.modts2021.12.16 12:15:19en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé kovové materiály a kompozity na bázi kovůcs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Příprava a charakterizace nanostrukturcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
metals1100475.pdf
Size:
10.98 MB
Format:
Adobe Portable Document Format
Description:
metals1100475.pdf