Influence of Load-bearing Structure on Size of Bonded Facade Cladding

Loading...
Thumbnail Image

Authors

Liška, Pavel
Nečasová, Barbora
Šlanhof, Jiří

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

EDP Sciences
Altmetrics

Abstract

Abstract. Architecture has been an integral part of our lives ever since people first existed. Structures are required by both investors and society to have what is considered a highly modern appearance while maintaining elements of a long service life. To meet such requirements, it is necessary to use modern technologies and materials. Bonded joints represent one of the options. Unlike with mechanical joints, it is possible to use bonded joints to anchor large format cladding panels to bearing substructures of various shapes and sizes. The design is simple, but very technically demanding to implement. One of the factors which have an impact on both the design and its implementation is the bearing substructure itself. As part of a research project, a load bearing substructure made from wood and aluminium alloy was tested. The test results prove that the mechanical properties of the materials used, especially their thermal and moisture expansion, directly influence the size of the cladding. In the case of a bearing substructure made from wood, the cladding may be larger by several percentage points than in the case of a bearing substructure made from aluminium alloy.
Abstract. Architecture has been an integral part of our lives ever since people first existed. Structures are required by both investors and society to have what is considered a highly modern appearance while maintaining elements of a long service life. To meet such requirements, it is necessary to use modern technologies and materials. Bonded joints represent one of the options. Unlike with mechanical joints, it is possible to use bonded joints to anchor large format cladding panels to bearing substructures of various shapes and sizes. The design is simple, but very technically demanding to implement. One of the factors which have an impact on both the design and its implementation is the bearing substructure itself. As part of a research project, a load bearing substructure made from wood and aluminium alloy was tested. The test results prove that the mechanical properties of the materials used, especially their thermal and moisture expansion, directly influence the size of the cladding. In the case of a bearing substructure made from wood, the cladding may be larger by several percentage points than in the case of a bearing substructure made from aluminium alloy.

Description

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO