2D FeSx Nanosheets by Atomic Layer Deposition: Electrocatalytic Properties for the Hydrogen Evolution Reaction

dc.contributor.authorZazpe Mendioroz, Raúlcs
dc.contributor.authorRodriguez Pereira, Jhonatancs
dc.contributor.authorThalluri, Sitaramanjaneya Moulics
dc.contributor.authorHromádko, Luděkcs
dc.contributor.authorPavliňák, Davidcs
dc.contributor.authorKolíbalová, Evacs
dc.contributor.authorKurka, Michalcs
dc.contributor.authorSopha, Hanna Ingridcs
dc.contributor.authorMacák, Jancs
dc.coverage.issue11cs
dc.coverage.volume16cs
dc.date.issued2023-06-09cs
dc.description.abstract2-dimensional FeSx nanosheets of different sizes are synthesized by applying different numbers of atomic layer deposition (ALD) cycles on TiO2 nanotube layers and graphite sheets as supporting materials and used as an electrocatalyst for the hydrogen evolution reaction (HER). The electrochemical results confirm electrocatalytic activity in alkaline media with outstanding long-term stability (>65 h) and enhanced catalytic activity, reflected by a notable drop in the initial HER overpotential value (up to 26 %). By using a range of characterization techniques, the origin of the enhanced catalytic activity was found to be caused by the synergistic interplay between in situ morphological and compositional changes in the 2D FeSx nanosheets during HER. Under the application of a cathodic potential in alkaline media, the as-synthesized 2D FeSx nanosheets transformed into iron oxyhydroxide-iron oxysulfide core-shell nanoparticles, which exhibited a higher active catalytic surface and newly created Fe-based HER catalytic sites.en
dc.formattextcs
dc.format.extent1-10cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationChemSusChem. 2023, vol. 16, issue 11, p. 1-10.en
dc.identifier.doi10.1002/cssc.202300115cs
dc.identifier.issn1864-564Xcs
dc.identifier.orcid0000-0001-9669-7946cs
dc.identifier.orcid0000-0002-8548-8185cs
dc.identifier.orcid0000-0001-7091-3022cs
dc.identifier.other183750cs
dc.identifier.researcheridM-7529-2015cs
dc.identifier.scopus34872408700cs
dc.identifier.scopus56226267000cs
dc.identifier.scopus55655855500cs
dc.identifier.urihttp://hdl.handle.net/11012/213685
dc.language.isoencs
dc.publisherWiley-VCHcs
dc.relation.ispartofChemSusChemcs
dc.relation.urihttps://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.202300115cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1864-564X/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectatomic layer depositionen
dc.subjectelectrocatalysisen
dc.subjecthydrogen evolution reactionen
dc.subjectiron sulfideen
dc.subjectthin filmsen
dc.title2D FeSx Nanosheets by Atomic Layer Deposition: Electrocatalytic Properties for the Hydrogen Evolution Reactionen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-183750en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:51:19en
sync.item.modts2025.01.17 16:44:33en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé nízkodimenzionální nanomateriálycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ChemSusChem2023Zazpe.pdf
Size:
799.98 KB
Format:
Adobe Portable Document Format
Description:
ChemSusChem2023Zazpe.pdf