Automated Human Recognition From Image Data
but.event.date | 23.04.2020 | cs |
but.event.title | Student EEICT 2020 | cs |
dc.contributor.author | Dobiš, Lukáš | |
dc.date.accessioned | 2021-07-15T11:17:20Z | |
dc.date.available | 2021-07-15T11:17:20Z | |
dc.date.issued | 2020 | cs |
dc.description.abstract | This paper describes an approach for automated human recognition by using convolutional neural networks (CNN) to perform facial analysis of persons face from image data. The predicted biometric indicators are following: age, gender, facial landmarks and facial expression. Network architectures with pretrained weights for each task are described. Script of interconnected CNN is explained and its results support further proposed expansion plans for live video inference. | en |
dc.format | text | cs |
dc.format.extent | 216-219 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings I of the 26st Conference STUDENT EEICT 2020: General papers. s. 216-219. ISBN 978-80-214-5867-3 | cs |
dc.identifier.isbn | 978-80-214-5867-3 | |
dc.identifier.uri | http://hdl.handle.net/11012/200562 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings I of the 26st Conference STUDENT EEICT 2020: General papers | en |
dc.relation.uri | https://conf.feec.vutbr.cz/eeict/EEICT2020 | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | deep learning | en |
dc.subject | computer vision | en |
dc.subject | convolution neural networks | en |
dc.subject | face detection | en |
dc.subject | age estimation | en |
dc.subject | gender classification | en |
dc.subject | emotion classification | en |
dc.title | Automated Human Recognition From Image Data | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 216-eeict_1.pdf
- Size:
- 4.73 MB
- Format:
- Adobe Portable Document Format
- Description: