Using deep learning for gene detection and classification in raw nanopore signals

dc.contributor.authorNykrýnová, Markétacs
dc.contributor.authorJakubíček, Romancs
dc.contributor.authorBartoň, Vojtěchcs
dc.contributor.authorBezdíček, Matějcs
dc.contributor.authorLengerová, Martinacs
dc.contributor.authorŠkutková, Helenacs
dc.coverage.issue1cs
dc.coverage.volume13cs
dc.date.accessioned2022-09-27T08:53:25Z
dc.date.available2022-09-27T08:53:25Z
dc.date.issued2022-09-15cs
dc.description.abstractRecently, nanopore sequencing has come to the fore as library preparation is rapid and simple, sequencing can be done almost anywhere, and longer reads are obtained than with next-generation sequencing. The main bottleneck still lies in data postprocessing which consists of basecalling, genome assembly, and localizing significant sequences, which is time consuming and computationally demanding, thus prolonging delivery of crucial results for clinical practice. Here, we present a neural network-based method capable of detecting and classifying specific genomic regions already in raw nanopore signals—squiggles. Therefore, the basecalling process can be omitted entirely as the raw signals of significant genes, or intergenic regions can be directly analyzed, or if the nucleotide sequences are required, the identified squiggles can be basecalled, preferably to others. The proposed neural network could be included directly in the sequencing run, allowing real-time squiggle processing.en
dc.formattextcs
dc.format.extent1-11cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationFrontiers in Microbiology. 2022, vol. 13, issue 1, p. 1-11.en
dc.identifier.doi10.3389/fmicb.2022.942179cs
dc.identifier.issn1664-302Xcs
dc.identifier.other177652cs
dc.identifier.urihttp://hdl.handle.net/11012/208454
dc.language.isoencs
dc.publisherFrontiers Media SAcs
dc.relation.ispartofFrontiers in Microbiologycs
dc.relation.urihttps://www.frontiersin.org/articles/10.3389/fmicb.2022.942179/fullcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1664-302X/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectnanopore sequencingen
dc.subjectsquigglesen
dc.subjectneural networken
dc.subjectMLSTen
dc.subjectbacterial typingen
dc.titleUsing deep learning for gene detection and classification in raw nanopore signalsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-177652en
sync.item.dbtypeVAVen
sync.item.insts2023.01.05 16:55:12en
sync.item.modts2023.01.05 16:14:57en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav biomedicínského inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fmicb13942179.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format
Description:
fmicb13942179.pdf