Size Effect on the Ductile Fracture of the Aluminium Alloy 2024-T351

dc.contributor.authorŠebek, Františekcs
dc.contributor.authorSalvet, Patrikcs
dc.contributor.authorBoháč, Petrcs
dc.contributor.authorAdámek, Romancs
dc.contributor.authorVěchet, Stanislavcs
dc.contributor.authorNávrat, Tomášcs
dc.contributor.authorZapletal, Josefcs
dc.contributor.authorGanjiani, Mehdics
dc.coverage.issue1cs
dc.coverage.volume64cs
dc.date.issued2024-09-10cs
dc.description.abstractBackground Reliably calibrated criteria are needed for an accurate prediction of fracture of various components. However, there is not always a sufficient amount of material available. Therefore, miniature testing provides an alternative that is researched together with the following calibration of the ductile fracture criteria and investigating the size effect. Objective The aim is to design miniature testing equipment and specimens for tensile testing, which covers various stress states. This is supplemented by the small punch test, which has the same specimen thickness, taken from the literature to broaden the portfolio for calibration. The second part deals with conducting the finite element analysis, which provided a basis for the calibration of the phenomenological ductile fracture criterion applicable to crack-free bodies to indicate the crack initiation. Methods The steel frame to test thin specimens is designed with optical measurement of deformations. The finite element method is used, within Abaqus and user subroutines, to simulate the tests to obtain the variables needed for the calibration. In addition, the calibration of the criterion using machine learning is explored. Results The feasibility of the proposed experimental program is tested on the aluminium alloy 2024-T351. Moreover, the numerical simulations, which showed a good match with experiments in terms of force responses, adds to the knowledge of modelling in the scope of continuum damage mechanics. Conclusions The presented results provide a material basis for the aluminium alloy studied on a lower scale, while they broaden the testing possibilities and analyses the calibration strategies for the best failure predictability possible.en
dc.description.abstractBackground Reliably calibrated criteria are needed for an accurate prediction of fracture of various components. However, there is not always a sufficient amount of material available. Therefore, miniature testing provides an alternative that is researched together with the following calibration of the ductile fracture criteria and investigating the size effect. Objective The aim is to design miniature testing equipment and specimens for tensile testing, which covers various stress states. This is supplemented by the small punch test, which has the same specimen thickness, taken from the literature to broaden the portfolio for calibration. The second part deals with conducting the finite element analysis, which provided a basis for the calibration of the phenomenological ductile fracture criterion applicable to crack-free bodies to indicate the crack initiation. Methods The steel frame to test thin specimens is designed with optical measurement of deformations. The finite element method is used, within Abaqus and user subroutines, to simulate the tests to obtain the variables needed for the calibration. In addition, the calibration of the criterion using machine learning is explored. Results The feasibility of the proposed experimental program is tested on the aluminium alloy 2024-T351. Moreover, the numerical simulations, which showed a good match with experiments in terms of force responses, adds to the knowledge of modelling in the scope of continuum damage mechanics. Conclusions The presented results provide a material basis for the aluminium alloy studied on a lower scale, while they broaden the testing possibilities and analyses the calibration strategies for the best failure predictability possible.en
dc.formattextcs
dc.format.extent1483-1495cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationEXPERIMENTAL MECHANICS. 2024, vol. 64, issue 1, p. 1483-1495.en
dc.identifier.doi10.1007/s11340-024-01108-3cs
dc.identifier.issn0014-4851cs
dc.identifier.orcid0000-0003-3813-6555cs
dc.identifier.orcid0009-0006-8718-101Xcs
dc.identifier.orcid0000-0002-8026-5740cs
dc.identifier.orcid0000-0002-8961-154Xcs
dc.identifier.orcid0000-0003-2772-3551cs
dc.identifier.orcid0000-0001-6121-7260cs
dc.identifier.other189597cs
dc.identifier.researcheridI-5694-2013cs
dc.identifier.researcheridH-1401-2014cs
dc.identifier.researcheridQ-4147-2017cs
dc.identifier.scopus57216287741cs
dc.identifier.scopus15042816200cs
dc.identifier.scopus23479029100cs
dc.identifier.urihttp://hdl.handle.net/11012/250698
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofEXPERIMENTAL MECHANICScs
dc.relation.urihttps://link.springer.com/article/10.1007/s11340-024-01108-3cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0014-4851/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectDimplesen
dc.subjectDuctile fractureen
dc.subjectEvolutionary algorithmen
dc.subjectNaturally aged alloyen
dc.subjectSize effecten
dc.subjectDimples
dc.subjectDuctile fracture
dc.subjectEvolutionary algorithm
dc.subjectNaturally aged alloy
dc.subjectSize effect
dc.titleSize Effect on the Ductile Fracture of the Aluminium Alloy 2024-T351en
dc.title.alternativeSize Effect on the Ductile Fracture of the Aluminium Alloy 2024-T351en
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/GA0/GA/GA23-04724Scs
sync.item.dbidVAV-189597en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 15:07:14en
sync.item.modts2025.10.14 10:11:08en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav mechaniky těles, mechatroniky a biomechanikycs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav materiálových věd a inženýrstvícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s11340024011083.pdf
Size:
11.29 MB
Format:
Adobe Portable Document Format
Description:
file s11340024011083.pdf