Příprava trénovacích dat pomocí generativních neuronových sítí

Loading...
Thumbnail Image

Date

Authors

Ševčík, Pavel

Mark

A

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Cílem této práce byla příprava trénovací datové sady pro detekci dopravních značek pomocí generativních neuronových sítí. V řešení byla použita upravená architektura U-Net a bylo experimentováno s aplikací stylů pomocí vrstev AdaIN podobně jako v modelu StyleGAN. Rozšířením reálné datové sady GTSDB o uměle vytvořené snímky bylo dosaženo úspěšnosti 80,36 %, což představuje zlepšení o 19,27 % oproti úspěšnosti detektoru natrénovanému pouze na reálných datech.
The aim of this thesis was to prepare a training data set for traffic sign detection using generative neural networks. The solution uses a modified U-Net architecture and several experiments with the application of styles using AdaIN layers as in the StyleGAN model have been conducted. By extending the real GTSDB data set with the generated images, mean average precision of 80.36 % has been achieved, which yields an improvement of 19.27 % compared to the mean average precision of the detection model trained on real data only.

Description

Citation

ŠEVČÍK, P. Příprava trénovacích dat pomocí generativních neuronových sítí [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2020.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Informační technologie

Comittee

doc. Ing. Martin Čadík, Ph.D. (předseda) doc. Ing. Jiří Jaroš, Ph.D. (místopředseda) Ing. David Bařina, Ph.D. (člen) doc. Ing. Radek Burget, Ph.D. (člen) doc. Mgr. Lukáš Holík, Ph.D. (člen)

Date of acceptance

2020-07-08

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm výborně (A). Otázky u obhajoby: Co je Active Learning? Proč je jednodušší natrénovat reziduální model? Jaká byla nejnáročnější část práce? Co je Vaší prací? Proč jste zvolil tuto architekturu? Jaký hardware jste používal? Jak dlouho trénování trvalo?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO