Příprava trénovacích dat pomocí generativních neuronových sítí

Loading...
Thumbnail Image
Date
Authors
Ševčík, Pavel
ORCID
Mark
A
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta informačních technologií
Abstract
Cílem této práce byla příprava trénovací datové sady pro detekci dopravních značek pomocí generativních neuronových sítí. V řešení byla použita upravená architektura U-Net a bylo experimentováno s aplikací stylů pomocí vrstev AdaIN podobně jako v modelu StyleGAN. Rozšířením reálné datové sady GTSDB o uměle vytvořené snímky bylo dosaženo úspěšnosti 80,36 %, což představuje zlepšení o 19,27 % oproti úspěšnosti detektoru natrénovanému pouze na reálných datech.
The aim of this thesis was to prepare a training data set for traffic sign detection using generative neural networks. The solution uses a modified U-Net architecture and several experiments with the application of styles using AdaIN layers as in the StyleGAN model have been conducted. By extending the real GTSDB data set with the generated images, mean average precision of 80.36 % has been achieved, which yields an improvement of 19.27 % compared to the mean average precision of the detection model trained on real data only.
Description
Citation
ŠEVČÍK, P. Příprava trénovacích dat pomocí generativních neuronových sítí [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2020.
Document type
Document version
Date of access to the full text
Language of document
cs
Study field
Informační technologie
Comittee
doc. Ing. Martin Čadík, Ph.D. (předseda) doc. Ing. Jiří Jaroš, Ph.D. (místopředseda) Ing. David Bařina, Ph.D. (člen) doc. Ing. Radek Burget, Ph.D. (člen) doc. Mgr. Lukáš Holík, Ph.D. (člen)
Date of acceptance
2020-07-08
Defence
Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm výborně (A). Otázky u obhajoby: Co je Active Learning? Proč je jednodušší natrénovat reziduální model? Jaká byla nejnáročnější část práce? Co je Vaší prací? Proč jste zvolil tuto architekturu? Jaký hardware jste používal? Jak dlouho trénování trvalo?
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO