The Effects of Silica Fume and Superplasticizer Type on the Properties and Microstructure of Reactive Powder Concrete

Loading...
Thumbnail Image

Authors

Šoukal, František
Bocian, Luboš
Novotný, Radoslav
Dlabajová, Lucie
Kratochvílová, Nikola
Hajzler, Jan
Koutný, Ondřej
Drdlová, Martina

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

This paper deals with the optimization of reactive powder concrete mixtures with respect to the addition of silica fume and the type of polycarboxylate superplasticizer used. First, the properties of reactive powder concrete with eight different commercial polycarboxylate superplasticizers were tested in terms of workability, specific weight, and mechanical properties. It was found that different commercially available superplasticizers had significant effects on the slump flow, specific weight, and compressive and flexural strengths. The optimal superplasticizer (BASF ACE430) was selected for further experiments in order to evaluate the influences of silica fume and superplasticizer content on the same material properties. The results showed that the silica fume and superplasticizer content had considerable effects on the mini-cone slump flow value, specific weight, flexural and compressive strengths, and microstructure. There were clearly visible trends and local minima and maxima of the measured properties. The optimal reactive powder concrete mixture had a composition of 3.5–4.0% superplasticizer and 15–25% silica fume.
This paper deals with the optimization of reactive powder concrete mixtures with respect to the addition of silica fume and the type of polycarboxylate superplasticizer used. First, the properties of reactive powder concrete with eight different commercial polycarboxylate superplasticizers were tested in terms of workability, specific weight, and mechanical properties. It was found that different commercially available superplasticizers had significant effects on the slump flow, specific weight, and compressive and flexural strengths. The optimal superplasticizer (BASF ACE430) was selected for further experiments in order to evaluate the influences of silica fume and superplasticizer content on the same material properties. The results showed that the silica fume and superplasticizer content had considerable effects on the mini-cone slump flow value, specific weight, flexural and compressive strengths, and microstructure. There were clearly visible trends and local minima and maxima of the measured properties. The optimal reactive powder concrete mixture had a composition of 3.5–4.0% superplasticizer and 15–25% silica fume.

Description

Citation

Materials. 2023, vol. 16, issue 20, 19 p.
https://www.mdpi.com/1996-1944/16/20/6670

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO