Loading of Silver (I) Ion in L-Cysteine-Functionalized Silica Gel Material for Aquatic Purification

Loading...
Thumbnail Image

Authors

Al-Anber, Mohammed A.
Al Ja´afreh, Malak
Al-Momani, Idrees F.
Hijazi, Ahmed, K.
Sobola, Dinara
Sagadevan, Suresh
Al Bayaydah, Salsabeel

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

The L-cysteine-functionalized silica (SG-Cys(-)Na(+)) matrix was effectively loaded with silver (I) ions using the batch sorption technique. Optimal Ag(I) loading into SG-Cys(-)Na(+) reached 98% at pHi = 6, 80 rpm, 1 mg L-1, and a temperature of 55 degree celsius. The Langmuir isotherm was found to be suitable for Ag(I) binding onto SG-Cys-Na+ active sites, forming a homogeneous monolayer (R-2 = 0.999), as confirmed by FTIR spectroscopy. XRD analysis indicated matrix stability and the absence of Ag2O and Ag(0) phases, observed from diffraction peaks. The pseudo-second-order model (R-2 > 0.999) suggested chemisorption-controlled adsorption, involving chemical bonding between silver ions and SG-Cys(-)Na(+) surface. Thermodynamic parameters were calculated, indicating higher initial concentrations leading to increased equilibrium constants, negative Delta G values, positive Delta S values, and negative Delta H. This study aimed to explore silver ion saturation on silica surfaces and the underlying association mechanisms. The capability to capture and load silver (I) ions onto functionalized silica gel materials holds promise for environmental and water purification applications.
The L-cysteine-functionalized silica (SG-Cys(-)Na(+)) matrix was effectively loaded with silver (I) ions using the batch sorption technique. Optimal Ag(I) loading into SG-Cys(-)Na(+) reached 98% at pHi = 6, 80 rpm, 1 mg L-1, and a temperature of 55 degree celsius. The Langmuir isotherm was found to be suitable for Ag(I) binding onto SG-Cys-Na+ active sites, forming a homogeneous monolayer (R-2 = 0.999), as confirmed by FTIR spectroscopy. XRD analysis indicated matrix stability and the absence of Ag2O and Ag(0) phases, observed from diffraction peaks. The pseudo-second-order model (R-2 > 0.999) suggested chemisorption-controlled adsorption, involving chemical bonding between silver ions and SG-Cys(-)Na(+) surface. Thermodynamic parameters were calculated, indicating higher initial concentrations leading to increased equilibrium constants, negative Delta G values, positive Delta S values, and negative Delta H. This study aimed to explore silver ion saturation on silica surfaces and the underlying association mechanisms. The capability to capture and load silver (I) ions onto functionalized silica gel materials holds promise for environmental and water purification applications.

Description

Citation

Gels. 2023, vol. 9, issue 11, p. 1-19.
https://www.mdpi.com/2310-2861/9/11/865

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO