A road for macroporous silicon stabilization by ultrathin ALD TiO2 coating

dc.contributor.authorAl Chimali, Bacharcs
dc.contributor.authorCarrasco, Irenecs
dc.contributor.authorDefforge, Thomascs
dc.contributor.authorDailleau, Romaincs
dc.contributor.authorMonier, Lisacs
dc.contributor.authorBaishya, Kaushikcs
dc.contributor.authorMacák, Jancs
dc.contributor.authorGautier, Gaelcs
dc.contributor.authorLe Borgne, Bricecs
dc.coverage.issue23cs
dc.coverage.volume5cs
dc.date.accessioned2025-06-11T11:56:26Z
dc.date.available2025-06-11T11:56:26Z
dc.date.issued2024-11-25cs
dc.description.abstractMacroporous silicon films have great potential for a plethora of applications in optoelectronics and microelectronics. However, such layers are too electrically and chemically unstable to be used in fuel cells, supercapacitors or any devices requiring the use of an electrolyte. This is due to their high surface-to-volume ratio, which makes them prone to chemical reactions, such as photo-oxidation, especially in aqueous media. In this work, we investigated how to exploit the capabilities of macroporous silicon while avoiding its oxidation. To do so, we explored the influence of ultrathin TiO2 films by atomic layer deposition (ALD) onto the walls of silicon macropores, created by electrochemical etching from n-type wafers. Using microscopy and optical analysis, we demonstrate the achievability of ALD coating on macroporous silicon, as well as the stability of these films against oxidation. In particular, we show that 5 ALD cycles that correspond to less than 1 nm thin coating are sufficient to passivate the silicon surface. The coated and uncoated layers were analyzed and compared before and after exposure to water and sunlight. The monitoring of the Si-O-Si band area evolution over 29 days gave no evidence of photo-corrosion. In addition, the wettability of the samples did not change after functionalization. Finally, to investigate the oxidation prevention for photocatalytic applications, we showed that methylene blue degradation rates were significantly increased (by 50% on average) for 10 nm TiO2 ALD-coated porous silicon samples when compared to natural degradation. Interestingly, layers thinner than 1 nm also showed enhanced catalytic kinetics for short times (t < 40 min).en
dc.formattextcs
dc.format.extent9270-9278cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMaterials Advances. 2024, vol. 5, issue 23, p. 9270-9278.en
dc.identifier.doi10.1039/d4ma00654bcs
dc.identifier.issn2633-5409cs
dc.identifier.orcid0000-0001-6910-8560cs
dc.identifier.orcid0000-0001-7091-3022cs
dc.identifier.other191170cs
dc.identifier.scopus55655855500cs
dc.identifier.urihttps://hdl.handle.net/11012/251924
dc.language.isoencs
dc.publisherROYAL SOC CHEMISTRYcs
dc.relation.ispartofMaterials Advancescs
dc.relation.urihttps://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00654bcs
dc.rightsCreative Commons Attribution-NonCommercial 3.0 Unportedcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2633-5409/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/cs
dc.subjectATOMIC LAYER DEPOSITIONen
dc.subjectPOROUS SILICONen
dc.subjectMESOPOROUS SILICONen
dc.subjectSURFACEen
dc.subjectMETALen
dc.subjectFILMSen
dc.subjectWATERen
dc.subjectOXIDEen
dc.subjectOXIDATIONen
dc.subjectANATASEen
dc.titleA road for macroporous silicon stabilization by ultrathin ALD TiO2 coatingen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-191170en
sync.item.dbtypeVAVen
sync.item.insts2025.06.11 13:56:26en
sync.item.modts2025.06.11 13:33:00en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé nízkodimenzionální nanomateriálycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
d4ma00654b.pdf
Size:
1.37 MB
Format:
Adobe Portable Document Format
Description:
file d4ma00654b.pdf