Reconstructive Mapping from Sparsely-Sampled Groundwater Data Using Compressive Sensing
Loading...
Date
2021-05-10
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Scientific Research Publishing
Altmetrics
Abstract
Compressive sensing is a powerful method for reconstruction of sparsely-sampled data, based on statistical optimization. It can be applied to a range of flow measurement and visualization data, and in this work we show the usage in groundwater mapping. Due to scarcity of water in many regions of the world, including southwestern United States, monitoring and management of groundwater is of utmost importance. A complete mapping of groundwater is difficult since the monitored sites are far from one another, and thus the data sets are considered extremely “sparse”. To overcome this difficulty in complete mapping of groundwater, compressive sensing is an ideal tool, as it bypasses the classical Nyquist criterion. We show that compressive sensing can effectively be used for reconstructions of groundwater level maps, by validating against data. This approach can have an impact on geographical sensing and information, as effective monitoring and management are enabled without constructing numerous or expensive measurement sites for groundwater.
Description
Citation
International Journal of Geographical Information Systems. 2021, vol. 13, issue 3, p. 287-301.
https://www.scirp.org/journal/paperinformation.aspx?paperid=108983
https://www.scirp.org/journal/paperinformation.aspx?paperid=108983
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en