Reconstructive Mapping from Sparsely-Sampled Groundwater Data Using Compressive Sensing

Loading...
Thumbnail Image

Authors

Lee, Taewoo
Lee, Joon Young
Park, Jung Eun
Bellerová, Hana
Raudenský, Miroslav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Scientific Research Publishing
Altmetrics

Abstract

Compressive sensing is a powerful method for reconstruction of sparsely-sampled data, based on statistical optimization. It can be applied to a range of flow measurement and visualization data, and in this work we show the usage in groundwater mapping. Due to scarcity of water in many regions of the world, including southwestern United States, monitoring and management of groundwater is of utmost importance. A complete mapping of groundwater is difficult since the monitored sites are far from one another, and thus the data sets are considered extremely “sparse”. To overcome this difficulty in complete mapping of groundwater, compressive sensing is an ideal tool, as it bypasses the classical Nyquist criterion. We show that compressive sensing can effectively be used for reconstructions of groundwater level maps, by validating against data. This approach can have an impact on geographical sensing and information, as effective monitoring and management are enabled without constructing numerous or expensive measurement sites for groundwater.
Compressive sensing is a powerful method for reconstruction of sparsely-sampled data, based on statistical optimization. It can be applied to a range of flow measurement and visualization data, and in this work we show the usage in groundwater mapping. Due to scarcity of water in many regions of the world, including southwestern United States, monitoring and management of groundwater is of utmost importance. A complete mapping of groundwater is difficult since the monitored sites are far from one another, and thus the data sets are considered extremely “sparse”. To overcome this difficulty in complete mapping of groundwater, compressive sensing is an ideal tool, as it bypasses the classical Nyquist criterion. We show that compressive sensing can effectively be used for reconstructions of groundwater level maps, by validating against data. This approach can have an impact on geographical sensing and information, as effective monitoring and management are enabled without constructing numerous or expensive measurement sites for groundwater.

Description

Citation

International Journal of Geographical Information Systems. 2021, vol. 13, issue 3, p. 287-301.
https://www.scirp.org/journal/paperinformation.aspx?paperid=108983

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO