How the Support Defines Properties of 2D Metal-Organic Frameworks: Fe-TCNQ on Graphene versus Au(111)

Loading...
Thumbnail Image

Authors

Jakub, Zdeněk
Trllová Shahsavar, Azin
Planer, Jakub
Hrůza, Dominik
Herich, Ondrej
Procházka, Pavel
Čechal, Jan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society
Altmetrics

Abstract

The functionality of 2D metal-organic frameworks (MOFs) is crucially dependent on the local environment of the embedded metal atoms. These atomic-scale details are best ascertained on MOFs supported on well-defined surfaces, but the interaction with the support often changes the MOF properties. We elucidate the extent of this effect by comparing the Fe-TCNQ 2D MOF on two weakly interacting supports: graphene and Au(111). We show that the Fe-TCNQ on graphene is nonplanar with iron in quasi-tetrahedral sites, but on Au(111) it is planarized by stronger van der Waals interaction. The differences in physical and electronic structures result in distinct properties of the supported 2D MOFs. The d (2 )(z )center position is shifted by 1.4 eV between Fe sites on the two supports, and dramatic differences in chemical reactivity are experimentally identified using a TCNQ probe molecule. These results outline the limitations of common on-surface approaches using metal supports and show that the intrinsic MOF properties can be partially retained on graphene.
The functionality of 2D metal-organic frameworks (MOFs) is crucially dependent on the local environment of the embedded metal atoms. These atomic-scale details are best ascertained on MOFs supported on well-defined surfaces, but the interaction with the support often changes the MOF properties. We elucidate the extent of this effect by comparing the Fe-TCNQ 2D MOF on two weakly interacting supports: graphene and Au(111). We show that the Fe-TCNQ on graphene is nonplanar with iron in quasi-tetrahedral sites, but on Au(111) it is planarized by stronger van der Waals interaction. The differences in physical and electronic structures result in distinct properties of the supported 2D MOFs. The d (2 )(z )center position is shifted by 1.4 eV between Fe sites on the two supports, and dramatic differences in chemical reactivity are experimentally identified using a TCNQ probe molecule. These results outline the limitations of common on-surface approaches using metal supports and show that the intrinsic MOF properties can be partially retained on graphene.

Description

Citation

Journal of the American Chemical Society. 2024, vol. 146, issue 5, p. 3471-3482.
https://pubs.acs.org/doi/10.1021/jacs.3c13212

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO