How the Support Defines Properties of 2D Metal-Organic Frameworks: Fe-TCNQ on Graphene versus Au(111)
Loading...
Date
2024-01-22
Authors
Jakub, Zdeněk
Trllová Shahsavar, Azin
Planer, Jakub
Hrůza, Dominik
Herich, Ondrej
Procházka, Pavel
Čechal, Jan
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
American Chemical Society
Altmetrics
Abstract
The functionality of 2D metal-organic frameworks (MOFs) is crucially dependent on the local environment of the embedded metal atoms. These atomic-scale details are best ascertained on MOFs supported on well-defined surfaces, but the interaction with the support often changes the MOF properties. We elucidate the extent of this effect by comparing the Fe-TCNQ 2D MOF on two weakly interacting supports: graphene and Au(111). We show that the Fe-TCNQ on graphene is nonplanar with iron in quasi-tetrahedral sites, but on Au(111) it is planarized by stronger van der Waals interaction. The differences in physical and electronic structures result in distinct properties of the supported 2D MOFs. The d (2 )(z )center position is shifted by 1.4 eV between Fe sites on the two supports, and dramatic differences in chemical reactivity are experimentally identified using a TCNQ probe molecule. These results outline the limitations of common on-surface approaches using metal supports and show that the intrinsic MOF properties can be partially retained on graphene.
Description
Citation
Journal of the American Chemical Society. 2024, vol. 146, issue 5, p. 3471-3482.
https://pubs.acs.org/doi/10.1021/jacs.3c13212
https://pubs.acs.org/doi/10.1021/jacs.3c13212
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en