Detekce význačných bodů v obrazech vozidel

Loading...
Thumbnail Image

Date

Authors

Chadima, Vojtěch

Mark

C

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Tato práce řeší automatickou detekci význačných bodů na obrázcích automobilu. Takto detekované význačné mohou dále sloužit k automatické kalibraci kamery, například pro dohled v dopravě, což je problém, po jehož vyřešení je možné kameru využít v aplikacích jako měření rychlosti vozidel či hustoty dopravy. K detekci význačných bodů jsem použil konvoluční neuronovou síť typu Stacked Hourglass. Dále byl vytvořen generátor trénovacích dat v podobě obrázku a odpovídající anotace využívající API Blenderu, který umožňuje vytváření datasetů pro libovolné objekty. Detekované význačné body jsem analyzoval a seřadil dle přesnosti jejich detekce, přičemž platí, že čím přesněji je bod na snímku detekovatelný, tím je vhodnější pro použití při úlohách typu kalibrace kamery.Podařilo se natrénovat modely neuronových sítí, které jsou schopny detekovat 1 021 význačných bodů, z nichž nejlepších 24 s průměrnou odchylkou menší než 3 pixely. Výsledky této práce jsou základem pro kalibraci kamery na základě rozpoznání nejvhodnějších význačných bodů, případně mohou dále sloužit k vytváření vlastních trénovacích datasetů a trénování vlastních modelů neuronových sítí typu Stacked Hourglass.
This thesis aims to introduce automatic detection of landmarks on vehicle images. Detected landmarks can be then used for automatic traffic surveillance camera calibration or other computer vision applications. I solved the landmarks detection problem by using a novel type of convolutional neural network called Stacked Hourglass. Furthemore, I created an automatic trainig dataset (image + anotations) generator based on Blender API, which allows to create various datasets. Detected landmarks are analyzed and sorted in order to determine a set of superior landmarks that could be later used for camera calibration. The best-performing models detect up to 1 021 landmarks, while the best of them have less than 3.0 pixels average error. Finally, results can be further used in automatic camera calibration based on landmarks detection, to create custom datasets or to train Stacked Hourglass convolutional neural networks.

Description

Citation

CHADIMA, V. Detekce význačných bodů v obrazech vozidel [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2019.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Informační technologie

Comittee

prof. Dr. Ing. Pavel Zemčík, dr. h. c. (předseda) doc. Mgr. Adam Rogalewicz, Ph.D. (místopředseda) Ing. Michal Fusek, Ph.D. (člen) doc. Ing. Tomáš Martínek, Ph.D. (člen) doc. Ing. Petr Matoušek, Ph.D., M.A. (člen)

Date of acceptance

2019-06-10

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm C. Otázky u obhajoby: Jak vybíráte výsledný bod z výstupní mapy sítě? Berete maximální hodnotu, nebo např. vážený průměr? Zkusil jste natrénovaný model aplikovat na reálná data (fotografii vozidla)? Jakým způsobem byly voleny význačné body? Na jakých datech byla trénována neuronová síť?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO