A planar Schrodinger-Newton system with Trudinger-Moser critical growth

dc.contributor.authorLiu, Zhisucs
dc.contributor.authorRadulescu, Vicentiucs
dc.contributor.authorZhang, Jianjuncs
dc.coverage.issue4cs
dc.coverage.volume62cs
dc.date.issued2023-03-20cs
dc.description.abstractIn this paper, we focus on the existence of positive solutions to the following planar Schrodinger-Newton system with general critical exponential growth $-\Delta u + u + \phi u = f (u) in R^2, \Delta \phi = u^2 in R^2 $, where $f$ is an element of $ C^1( R, R)$. We apply a variational approach developed in [36] to study the above problem in the Sobolev space $H^1(R^2)$. The analysis developed in this paper also allows to investigate the relation between a Riesz-type of Schrodinger-Newton systems and a logarithmic-type of Schrodinger-Poisson systems. Furthermore, this approach can overcome some difficulties resulting from either the nonlocal term with sign-changing and unbounded logarithmic integral kernel, or the critical nonlinearity, or the lack of monotonicity of $ f(t)/t(3)$. We emphasize that it seems much difficult to use the variational framework developed in the existed literature to study the above problem.en
dc.description.abstractIn this paper, we focus on the existence of positive solutions to the following planar Schrodinger-Newton system with general critical exponential growth $-\Delta u + u + \phi u = f (u) in R^2, \Delta \phi = u^2 in R^2 $, where $f$ is an element of $ C^1( R, R)$. We apply a variational approach developed in [36] to study the above problem in the Sobolev space $H^1(R^2)$. The analysis developed in this paper also allows to investigate the relation between a Riesz-type of Schrodinger-Newton systems and a logarithmic-type of Schrodinger-Poisson systems. Furthermore, this approach can overcome some difficulties resulting from either the nonlocal term with sign-changing and unbounded logarithmic integral kernel, or the critical nonlinearity, or the lack of monotonicity of $ f(t)/t(3)$. We emphasize that it seems much difficult to use the variational framework developed in the existed literature to study the above problem.en
dc.formattextcs
dc.format.extent1-31cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationCALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. 2023, vol. 62, issue 4, p. 1-31.en
dc.identifier.doi10.1007/s00526-023-02463-0cs
dc.identifier.issn0944-2669cs
dc.identifier.orcid0000-0003-4615-5537cs
dc.identifier.other183408cs
dc.identifier.researcheridA-1503-2012cs
dc.identifier.scopus35608668800cs
dc.identifier.urihttp://hdl.handle.net/11012/213633
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofCALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONScs
dc.relation.urihttps://link.springer.com/article/10.1007/s00526-023-02463-0cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0944-2669/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectCONCENTRATION-COMPACTNESS PRINCIPLEen
dc.subjectPOISSON SYSTEMen
dc.subjectEXISTENCEen
dc.subjectEQUATIONSen
dc.subjectINEQUALITIESen
dc.subjectCALCULUSen
dc.subjectCONCENTRATION-COMPACTNESS PRINCIPLE
dc.subjectPOISSON SYSTEM
dc.subjectEXISTENCE
dc.subjectEQUATIONS
dc.subjectINEQUALITIES
dc.subjectCALCULUS
dc.titleA planar Schrodinger-Newton system with Trudinger-Moser critical growthen
dc.title.alternativeA planar Schrodinger-Newton system with Trudinger-Moser critical growthen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-183408en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:10:17en
sync.item.modts2025.10.14 09:44:30en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematikycs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s00526023024630.pdf
Size:
520.63 KB
Format:
Adobe Portable Document Format
Description:
s00526023024630.pdf