A planar Schrodinger-Newton system with Trudinger-Moser critical growth
dc.contributor.author | Liu, Zhisu | cs |
dc.contributor.author | Radulescu, Vicentiu | cs |
dc.contributor.author | Zhang, Jianjun | cs |
dc.coverage.issue | 4 | cs |
dc.coverage.volume | 62 | cs |
dc.date.accessioned | 2023-08-01T10:58:27Z | |
dc.date.available | 2023-08-01T10:58:27Z | |
dc.date.issued | 2023-03-20 | cs |
dc.description.abstract | In this paper, we focus on the existence of positive solutions to the following planar Schrodinger-Newton system with general critical exponential growth $-\Delta u + u + \phi u = f (u) in R^2, \Delta \phi = u^2 in R^2 $, where $f$ is an element of $ C^1( R, R)$. We apply a variational approach developed in [36] to study the above problem in the Sobolev space $H^1(R^2)$. The analysis developed in this paper also allows to investigate the relation between a Riesz-type of Schrodinger-Newton systems and a logarithmic-type of Schrodinger-Poisson systems. Furthermore, this approach can overcome some difficulties resulting from either the nonlocal term with sign-changing and unbounded logarithmic integral kernel, or the critical nonlinearity, or the lack of monotonicity of $ f(t)/t(3)$. We emphasize that it seems much difficult to use the variational framework developed in the existed literature to study the above problem. | en |
dc.format | text | cs |
dc.format.extent | 1-31 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. 2023, vol. 62, issue 4, p. 1-31. | en |
dc.identifier.doi | 10.1007/s00526-023-02463-0 | cs |
dc.identifier.issn | 0944-2669 | cs |
dc.identifier.orcid | 0000-0003-4615-5537 | cs |
dc.identifier.other | 183408 | cs |
dc.identifier.researcherid | A-1503-2012 | cs |
dc.identifier.scopus | 35608668800 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/213633 | |
dc.language.iso | en | cs |
dc.publisher | Springer Nature | cs |
dc.relation.ispartof | CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS | cs |
dc.relation.uri | https://link.springer.com/article/10.1007/s00526-023-02463-0 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/0944-2669/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | CONCENTRATION-COMPACTNESS PRINCIPLE | en |
dc.subject | POISSON SYSTEM | en |
dc.subject | EXISTENCE | en |
dc.subject | EQUATIONS | en |
dc.subject | INEQUALITIES | en |
dc.subject | CALCULUS | en |
dc.title | A planar Schrodinger-Newton system with Trudinger-Moser critical growth | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-183408 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2023.11.17 04:59:18 | en |
sync.item.modts | 2023.11.17 04:16:37 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s00526023024630.pdf
- Size:
- 520.63 KB
- Format:
- Adobe Portable Document Format
- Description:
- s00526023024630.pdf