A planar Schrodinger-Newton system with Trudinger-Moser critical growth

dc.contributor.authorLiu, Zhisucs
dc.contributor.authorRadulescu, Vicentiucs
dc.contributor.authorZhang, Jianjuncs
dc.coverage.issue4cs
dc.coverage.volume62cs
dc.date.accessioned2023-08-01T10:58:27Z
dc.date.available2023-08-01T10:58:27Z
dc.date.issued2023-03-20cs
dc.description.abstractIn this paper, we focus on the existence of positive solutions to the following planar Schrodinger-Newton system with general critical exponential growth $-\Delta u + u + \phi u = f (u) in R^2, \Delta \phi = u^2 in R^2 $, where $f$ is an element of $ C^1( R, R)$. We apply a variational approach developed in [36] to study the above problem in the Sobolev space $H^1(R^2)$. The analysis developed in this paper also allows to investigate the relation between a Riesz-type of Schrodinger-Newton systems and a logarithmic-type of Schrodinger-Poisson systems. Furthermore, this approach can overcome some difficulties resulting from either the nonlocal term with sign-changing and unbounded logarithmic integral kernel, or the critical nonlinearity, or the lack of monotonicity of $ f(t)/t(3)$. We emphasize that it seems much difficult to use the variational framework developed in the existed literature to study the above problem.en
dc.formattextcs
dc.format.extent1-31cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationCALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. 2023, vol. 62, issue 4, p. 1-31.en
dc.identifier.doi10.1007/s00526-023-02463-0cs
dc.identifier.issn0944-2669cs
dc.identifier.orcid0000-0003-4615-5537cs
dc.identifier.other183408cs
dc.identifier.researcheridA-1503-2012cs
dc.identifier.scopus35608668800cs
dc.identifier.urihttp://hdl.handle.net/11012/213633
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofCALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONScs
dc.relation.urihttps://link.springer.com/article/10.1007/s00526-023-02463-0cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0944-2669/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectCONCENTRATION-COMPACTNESS PRINCIPLEen
dc.subjectPOISSON SYSTEMen
dc.subjectEXISTENCEen
dc.subjectEQUATIONSen
dc.subjectINEQUALITIESen
dc.subjectCALCULUSen
dc.titleA planar Schrodinger-Newton system with Trudinger-Moser critical growthen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-183408en
sync.item.dbtypeVAVen
sync.item.insts2023.11.17 04:59:18en
sync.item.modts2023.11.17 04:16:37en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s00526023024630.pdf
Size:
520.63 KB
Format:
Adobe Portable Document Format
Description:
s00526023024630.pdf