Planar Choquard equations with critical exponential reaction and Neumann boundary condition
dc.contributor.author | Rawat, Sushmita | cs |
dc.contributor.author | Radulescu, Vicentiu | cs |
dc.contributor.author | Sreenadh, Konijeti | cs |
dc.coverage.issue | 10 | cs |
dc.coverage.volume | 297 | cs |
dc.date.accessioned | 2025-04-04T11:56:24Z | |
dc.date.available | 2025-04-04T11:56:24Z | |
dc.date.issued | 2024-10-26 | cs |
dc.description.abstract | We study the existence of positive weak solutions for the following problem: (Formula presented.) where (Formula presented.) is a bounded domain in (Formula presented.) with smooth boundary, (Formula presented.) is a bounded measurable function on (Formula presented.), (Formula presented.) is nonnegative real number, (Formula presented.) is the unit outer normal to (Formula presented.), (Formula presented.), and (Formula presented.). The functions (Formula presented.) and (Formula presented.) have critical exponential growth, while (Formula presented.) and (Formula presented.) are their primitives. The proofs combine the constrained minimization method with energy methods and topological tools. | en |
dc.format | text | cs |
dc.format.extent | 3847-3869 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Mathematische Nachrichten. 2024, vol. 297, issue 10, p. 3847-3869. | en |
dc.identifier.doi | 10.1002/mana.202400095 | cs |
dc.identifier.issn | 1522-2616 | cs |
dc.identifier.orcid | 0000-0003-4615-5537 | cs |
dc.identifier.other | 193714 | cs |
dc.identifier.researcherid | A-1503-2012 | cs |
dc.identifier.scopus | 35608668800 | cs |
dc.identifier.uri | https://hdl.handle.net/11012/250734 | |
dc.language.iso | en | cs |
dc.publisher | Wiley | cs |
dc.relation.ispartof | Mathematische Nachrichten | cs |
dc.relation.uri | https://onlinelibrary.wiley.com/doi/full/10.1002/mana.202400095 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1522-2616/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Cherrier inequality | en |
dc.subject | Hardy–Littlewood–Sobolev inequality | en |
dc.subject | Moser–Trudinger inequality | en |
dc.subject | Nehari manifold | en |
dc.subject | Neumann problem | en |
dc.title | Planar Choquard equations with critical exponential reaction and Neumann boundary condition | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-193714 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.04.04 13:56:24 | en |
sync.item.modts | 2025.04.04 10:32:09 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- MathematischeNachrichten2024Rawat.pdf
- Size:
- 287.75 KB
- Format:
- Adobe Portable Document Format
- Description:
- file MathematischeNachrichten2024Rawat.pdf