Calibration for Quantitative Chemical Analysis in IR Microscopic Imaging

Loading...
Thumbnail Image

Authors

Magnussen, Eirik Almklov
Zimmermann, Boris
Dzurendová, Simona
Slany, Ondrej
Tafintseva, Valeria
Liland, Kristian Hovde
Tondel, Kristin
Shapaval, Volha
Kohler, Achim

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Altmetrics

Abstract

Infrared spectroscopy of macroscopic samples can be calibrated against reference analysis, such as lipid profiles acquired by gas chromatography, and serve as a fast, low-cost, quantitative analytical method. Calibration of infrared microspectroscopic images against reference data is in general not feasible, and thus spatially resolved quantitative analysis from infrared spectral data has not been possible so far. In this work, we present a deep learning-based calibration transfer method to adapt regression models established for macroscopic infrared spectroscopic data to apply to microscopic pixel spectra of hyperspectral IR images. The calibration transfer is accomplished by transferring microspectroscopic infrared spectra to the domain of macroscopic spectra, which enables the use of models obtained for bulk measurements. This allows us to perform quantitative chemical analysis in the imaging domain based on infrared microspectroscopic measurements. We validate the suggested microcalibration approach on microspectroscopic data of oleaginous filamentous fungi, which is calibrated toward lipid profiles obtained by gas chromatography and measurements of glucosamine content to perform quantitative infrared microspectroscopy.
Infrared spectroscopy of macroscopic samples can be calibrated against reference analysis, such as lipid profiles acquired by gas chromatography, and serve as a fast, low-cost, quantitative analytical method. Calibration of infrared microspectroscopic images against reference data is in general not feasible, and thus spatially resolved quantitative analysis from infrared spectral data has not been possible so far. In this work, we present a deep learning-based calibration transfer method to adapt regression models established for macroscopic infrared spectroscopic data to apply to microscopic pixel spectra of hyperspectral IR images. The calibration transfer is accomplished by transferring microspectroscopic infrared spectra to the domain of macroscopic spectra, which enables the use of models obtained for bulk measurements. This allows us to perform quantitative chemical analysis in the imaging domain based on infrared microspectroscopic measurements. We validate the suggested microcalibration approach on microspectroscopic data of oleaginous filamentous fungi, which is calibrated toward lipid profiles obtained by gas chromatography and measurements of glucosamine content to perform quantitative infrared microspectroscopy.

Description

Citation

ANALYTICAL CHEMISTRY. 2025, vol. 97, issue 40, p. 21947-21955.
https://pubs.acs.org/doi/10.1021/acs.analchem.5c03049

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO