Bifurcation of positive periodic solutions to non-autonomous undamped Duffing equations

dc.contributor.authorŠremr, Jiří
dc.coverage.issue1cs
dc.coverage.volume10cs
dc.date.accessioned2021-07-02T06:09:13Z
dc.date.available2021-07-02T06:09:13Z
dc.date.issued2021cs
dc.description.abstractWe study a bifurcation of positive solutions to the parameter-dependentperiodic problem u′′=p(t)u−h(t)|u|λsgnu+μf(t);u(0) =u(ω), u′(0) =u′(ω),whereλ >1,p,h,f∈L([0,ω]), andμ∈Ris a parameter. Both the coefficientpand the forcing termfmay change their signs, h≥0a. e. on[0,ω]. We providesharp conditions on the existence and multiplicity as well as non-existence of positivesolutions to the given problem depending on the choice of the parameter μ.en
dc.formattextcs
dc.format.extent79-92cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMathematics for Applications. 2021 vol. 10, č. 1, s. 79-92. ISSN 1805-3629cs
dc.identifier.doi10.13164/ma.2021.07en
dc.identifier.issn1805-3629
dc.identifier.urihttp://hdl.handle.net/11012/200376
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.relation.ispartofMathematics for Applicationsen
dc.relation.urihttp://ma.fme.vutbr.cz/archiv/10_1/ma_10_1_sremr_final.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.rights.accessopenAccessen
dc.titleBifurcation of positive periodic solutions to non-autonomous undamped Duffing equationsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentÚstav matematikycs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ma_10_1_sremr_final.pdf
Size:
718.82 KB
Format:
Adobe Portable Document Format
Description:
Collections