Infinitely many smooth nodal solutions for Orlicz Robin problems
dc.contributor.author | Bahrouni, Anouar | cs |
dc.contributor.author | Missaoui, Hlel | cs |
dc.contributor.author | Radulescu, Vicentiu | cs |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 142 | cs |
dc.date.issued | 2023-08-17 | cs |
dc.description.abstract | In this note, we study a Robin problem driven by the Orlicz g-Laplace operator. In particular, by using a regularity result and Kajikiya's theorem, we prove that the problem has a whole sequence of distinct smooth nodal solutions converging to the trivial one. The analysis is developed in the most general abstract setting that corresponds to Orlicz-Sobolev function spaces. | en |
dc.format | text | cs |
dc.format.extent | 1-7 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | APPLIED MATHEMATICS LETTERS. 2023, vol. 142, issue 1, p. 1-7. | en |
dc.identifier.doi | 10.1016/j.aml.2023.108635 | cs |
dc.identifier.issn | 1873-5452 | cs |
dc.identifier.orcid | 0000-0003-4615-5537 | cs |
dc.identifier.other | 184003 | cs |
dc.identifier.researcherid | A-1503-2012 | cs |
dc.identifier.scopus | 35608668800 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/245041 | |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartof | APPLIED MATHEMATICS LETTERS | cs |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0893965923000678 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1873-5452/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Nodal solutions | en |
dc.subject | Orlicz-Sobolev spaces | en |
dc.subject | Robin boundary value | en |
dc.subject | Regularity | en |
dc.title | Infinitely many smooth nodal solutions for Orlicz Robin problems | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-184003 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:40:51 | en |
sync.item.modts | 2025.01.17 16:42:36 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1s2.0S0893965923000678main.pdf
- Size:
- 687.78 KB
- Format:
- Adobe Portable Document Format
- Description:
- file 1s2.0S0893965923000678main.pdf