Development of a test specimen carrier for the Taylor anvil test using 3D additive printing technology

dc.contributor.authorJopek, Miroslavcs
dc.contributor.authorMüller, Samuelcs
dc.contributor.authorŘiháček, Jancs
dc.coverage.issue10cs
dc.coverage.volume192cs
dc.date.accessioned2025-02-03T14:49:35Z
dc.date.available2025-02-03T14:49:35Z
dc.date.issued2024-10-01cs
dc.description.abstractDynamic material testing is increasingly crucial for establishing a comprehensive description of material models. One of the primary testing methods is the Taylor Anvil Test (TAT). In this test, strain rates of up to 10 5 s -1 can be achieved at impact speeds of 250 m/s. Proper evaluation of a specific material specimen in this test relies on delivering the test specimen to the impact point both centrally and perpendicularly, as well as at the moment of reaching the maximum impact speed. This Article addresses the development of a new carrier for round test specimens manufactured using additive 3D printing technology from a polyactide polymer adapted for the TAT device with a calibre of 17 mm. The Article closely examines the influence of geometric parameters of the carrier itself, optimized using the Ansys Fluid Flow software, with a focus on internal ballistics, particularly to achieve perpendicular impact and maximum impact speed without causing the destruction of the carrier. A new type of test carrier was designed and subsequently tested for round test specimens made of the aluminium alloy Al 2024T3, evaluating both the impact speeds of the carrier under identical initiation pressure parameters in the filling chamber and the impact speed parameters of the specimen, respectively, the strain rate of the test specimen.en
dc.formattextcs
dc.format.extent1-10cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationINTERNATIONAL JOURNAL OF IMPACT ENGINEERING. 2024, vol. 192, issue 10, p. 1-10.en
dc.identifier.doi10.1016/j.ijimpeng.2024.105026cs
dc.identifier.issn0734-743Xcs
dc.identifier.orcid0000-0001-5399-3059cs
dc.identifier.orcid0000-0003-2669-2730cs
dc.identifier.other193503cs
dc.identifier.researcheridABB-4100-2021cs
dc.identifier.researcheridD-9588-2018cs
dc.identifier.scopus6504024580cs
dc.identifier.scopus57191976313cs
dc.identifier.urihttps://hdl.handle.net/11012/249980
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofINTERNATIONAL JOURNAL OF IMPACT ENGINEERINGcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0734743X24001507cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0734-743X/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectTaylor anvil testen
dc.subjectAnsys fluid flowen
dc.subjectSpecimen carrieren
dc.subjectInternal ballisticsen
dc.subjectAdditive 3D printing technologyen
dc.titleDevelopment of a test specimen carrier for the Taylor anvil test using 3D additive printing technologyen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-193503en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:49:35en
sync.item.modts2025.01.17 15:17:58en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav strojírenské technologiecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S0734743X24001507main.pdf
Size:
7.96 MB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S0734743X24001507main.pdf