Characteristic function and moment generating function of multivariate folded normal distribution

Loading...
Thumbnail Image

Authors

Benko, Matej
Hübnerová, Zuzana
Witkovský, Viktor

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Nature
Altmetrics

Abstract

In this study, we derive the characteristic function of the multivariate folded normal distribution, a distribution that arises when the magnitudes-but not the signs-of a normally distributed random vector are of interest. The folded normal distribution is widely applicable across various fields. Thus, obtaining an analytical expression for its characteristic function is pivotal in understanding its fundamental properties. Moreover, this allows one to facilitate numerical evaluations of complex distributions involving linear combinations of absolute values of dependent normal variables. The derivation is based on a novel expression of the moment generating function, formulated using the cumulative distribution function of the multivariate normal distribution. To validate our findings, we present two examples using our MATLAB implementation. We compare the characteristic function for the sum of the absolute values of elements of a multivariate normal vector with the simulated empirical counterpart. Additionally, we derive the second mixed moment of the bivariate folded normal distribution from the moment generating function, demonstrating its agreement with known theoretical expressions.
In this study, we derive the characteristic function of the multivariate folded normal distribution, a distribution that arises when the magnitudes-but not the signs-of a normally distributed random vector are of interest. The folded normal distribution is widely applicable across various fields. Thus, obtaining an analytical expression for its characteristic function is pivotal in understanding its fundamental properties. Moreover, this allows one to facilitate numerical evaluations of complex distributions involving linear combinations of absolute values of dependent normal variables. The derivation is based on a novel expression of the moment generating function, formulated using the cumulative distribution function of the multivariate normal distribution. To validate our findings, we present two examples using our MATLAB implementation. We compare the characteristic function for the sum of the absolute values of elements of a multivariate normal vector with the simulated empirical counterpart. Additionally, we derive the second mixed moment of the bivariate folded normal distribution from the moment generating function, demonstrating its agreement with known theoretical expressions.

Description

Citation

STATISTICAL PAPERS. 2025, vol. 66, issue 4, p. 1-23.
https://link.springer.com/article/10.1007/s00362-025-01711-z

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO