Self-Standing Biohybrid Xerogels Incorporating Nanotubular Clays for Sustainable Removal of Pollutants

dc.contributor.authorCaruso, Maria Ritacs
dc.contributor.authorCalvino, Martina Mariacs
dc.contributor.authorŠiler, Pavelcs
dc.contributor.authorCába, Vladislavcs
dc.contributor.authorMilioto, Stefanacs
dc.contributor.authorLisuzzo, Lorenzocs
dc.contributor.authorLazzara, Giuseppecs
dc.contributor.authorCavallaro, Giuseppecs
dc.coverage.issue3cs
dc.coverage.volume21cs
dc.date.accessioned2025-06-11T12:56:09Z
dc.date.available2025-06-11T12:56:09Z
dc.date.issued2024-11-25cs
dc.description.abstractIn this work, it is reported a scalable and systematic protocol for the preparation of xerogels based on the use of green, highly available, and low-cost materials, i.e. halloysite nanoclay and chitosan, without the need for any expensive equipment or operational/energetic demands. Starting from colloidal dispersions, rheological studies demonstrate the formation of hydrogels with zero-shear viscosities enhanced by approximate to 9 orders of magnitude and higher storage moduli. Hence, the corresponding self-standing xerogels are prepared by a simple solvent casting method and their properties depend on the concentration of halloysite, possessing enhanced thermal stability and outstanding mechanical performances (elastic modulus and ultimate elongation of 165 MPa and 43%, respectively). The resulting biohybrid materials can be exploited for environmental remediation. High removal efficiencies are reached for the capture of organic molecules from aqueous media and the CO2 capture from the atmosphere is also investigated. Most importantly, the presence of an inorganic skeleton within the xerogels prevents the structure from collapsing upon drying and it allows for the control over their morphology and shape. Therefore, taking advantage of the overall features, the designed xerogels offer an attractive strategy for sustainably tackling pollution and for environmental remediation in a plethora of different domains.en
dc.formattextcs
dc.format.extent1-14cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationSmall. 2024, vol. 21, issue 3, p. 1-14.en
dc.identifier.doi10.1002/smll.202405215cs
dc.identifier.issn1613-6810cs
dc.identifier.orcid0000-0002-0383-1577cs
dc.identifier.orcid0000-0002-8409-992Xcs
dc.identifier.other193653cs
dc.identifier.urihttps://hdl.handle.net/11012/251926
dc.language.isoencs
dc.publisherWILEY-V C H VERLAG GMBHcs
dc.relation.ispartofSmallcs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202405215cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1613-6810/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectCO2en
dc.subjectenvironmental remediationen
dc.subjecthalloysiteen
dc.subjecthydrogelsen
dc.subjectp-coumaric aciden
dc.subjectxerogelsen
dc.titleSelf-Standing Biohybrid Xerogels Incorporating Nanotubular Clays for Sustainable Removal of Pollutantsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-193653en
sync.item.dbtypeVAVen
sync.item.insts2025.06.11 14:56:09en
sync.item.modts2025.06.11 14:33:20en
thesis.grantorVysoké učení technické v Brně. Fakulta chemická. Ústav chemie materiálůcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Small2024Caruso.pdf
Size:
6.32 MB
Format:
Adobe Portable Document Format
Description:
file Small2024Caruso.pdf