Feature Space Reduction As Data Preprocessing For The Anomaly Detection

Loading...
Thumbnail Image

Date

Authors

Bilik, Simon

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Abstract

In this paper, we present two pipelines in order to reduce the feature space for anomalydetection using the One Class SVM. As a first stage of both pipelines, we compare the performanceof three convolutional autoencoders. We use the PCA method together with t-SNE as the first pipelineand the reconstruction errors based method as the second. Both methods have potential for theanomaly detection, but the reconstruction error metrics prove to be more robust for this task. Weshow that the convolutional autoencoder architecture doesn’t have a significant effect for this task andwe prove the potential of our approach on the real world dataset.

Description

Citation

Proceedings I of the 27st Conference STUDENT EEICT 2021: General papers. s. 415-419. ISBN 978-80-214-5942-7
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Citace PRO