The T0-reflection in the category V-PreTop

dc.contributor.authorLazaar, Sami
dc.contributor.authorMhemdi, Abdelwaheb
dc.contributor.authorTahri, Randa
dc.coverage.issue1cs
dc.coverage.volume9cs
dc.date.accessioned2020-10-07T07:19:51Z
dc.date.available2020-10-07T07:19:51Z
dc.date.issued2020cs
dc.description.abstractAV-pretopological space is a pair(X, a)whereXis a nonempty set andais aP(X)self map satisfyinga(∅) =∅,A⊆a(A)anda(A∪B) =a(A)∪a(B)foranyA, B∈ P(X). It is well known that the categoryTopof topological spaces isa reflective subcategory in the categoryV-PreTopwhose objects are pretopologicalspaces of typeV. In the present paper we give the construction of theT0-reflectionin the categoryV-PreTop. Hence, some new separation axioms are introducedand characterized. Finally, the orthogonal of some subcategories are studied.en
dc.formattextcs
dc.format.extent43-53cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMathematics for Applications. 2020 vol. 9, č. 1, s. 43-53. ISSN 1805-3629cs
dc.identifier.doi10.13164/ma.2020.04en
dc.identifier.issn1805-3629
dc.identifier.urihttp://hdl.handle.net/11012/195181
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.relation.ispartofMathematics for Applicationsen
dc.relation.urihttp://ma.fme.vutbr.cz/archiv/9_1/ma_9_1_lazaar_et_al_final.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.rights.accessopenAccessen
dc.subjectpretopological spaces, reflective subcategories, separation axiomsen
dc.titleThe T0-reflection in the category V-PreTopen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentÚstav matematikycs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ma_9_1_lazaar_et_al_final.pdf
Size:
675.84 KB
Format:
Adobe Portable Document Format
Description:
Collections