Optimization Of Interior Permanent Magnet Synchronous Motor Using Evolutionary Optimization Algorithm

but.event.date25.04.2019cs
but.event.titleStudent EEICT 2019cs
dc.contributor.authorKnebl, Ladislav
dc.date.accessioned2020-04-16T07:19:40Z
dc.date.available2020-04-16T07:19:40Z
dc.date.issued2019cs
dc.description.abstractThe development of the interior permanent magnet synchronous motor has drawn a big interest over the last decade. This is due to the use of this kind of machine in the automotive industry, thanks to the machine high efficiency and high overload capability compare to other machine types. Using artificial intelligence or evolutionary optimization algorithms is possible to optimize the motor with maximum efficiency, lowest torque ripple and highest average torque, because a huge ammount and variety of geometry combinations are tested. This paper is focused on the overview of generally used optimization algorithms and optimization is demonstrated on Self-Organizing Migrating Algorithm (SOMA). Cost function and weight coefficients are also presented and used for optimization.en
dc.formattextcs
dc.format.extent664-668cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings of the 25st Conference STUDENT EEICT 2019. s. 664-668. ISBN 978-80-214-5735-5cs
dc.identifier.isbn978-80-214-5735-5
dc.identifier.urihttp://hdl.handle.net/11012/186755
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings of the 25st Conference STUDENT EEICT 2019en
dc.relation.urihttp://www.feec.vutbr.cz/EEICT/cs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectMaxwellen
dc.subjectSOMAen
dc.subjectOptimizationen
dc.subjectevolutionary optimization algorithmen
dc.subjectFinite element analysisen
dc.subjectInterior permanent magneten
dc.titleOptimization Of Interior Permanent Magnet Synchronous Motor Using Evolutionary Optimization Algorithmen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
664_eeict2019.pdf
Size:
779.2 KB
Format:
Adobe Portable Document Format
Description: