Enhanced C-O Functionality on Carbon Papers Ensures Lowering Nucleation Delay of ALD for Ru towards Unprecedented Alkaline HER Activity

Loading...
Thumbnail Image

Authors

Thalluri, Sitaramanjaneya Mouli
Rodriguez Pereira, Jhonatan
Zazpe Mendioroz, Raúl
Bawab, Bilal
Kolíbalová, Eva
Jelínek, Luděk
Macák, Jan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley VCH
Altmetrics

Abstract

The success in lowering the nucleation delay for Atomic Layer Deposition (ALD) of Ru on carbon surfaces is mitigated by constructive pretreatments resulting enhancement of C-O functionality. Treatment of the carbon papers (CP) allowed Ru species deposition for minimum number of ALD cycles (25 cycles) with good conformality. The development of electrocatalysts from single atoms to nanoparticles (NPs) on conductive supports with low metal loadings, thus improving performance, is essential in electrocatalysis. For alkaline hydrogen evolution reaction, ALD decorated CPs with Ru exhibit low onset potentials of approximate to 4.7 mV versus reversable hydrogen electrode (RHE) (at 10 mA cm(-2)) and a high turnover frequency of 1.92 H-2 s(-1) at 30 mV versus RHE. The Ru decorated CPs show comparable to higher catalytic activity than of Platinum (Pt) decorated CP also developed by ALD. The current representation of unfamiliar catalytic activities of Ru active centers developed by ALD, pave a bright and sustainable path for energy conversion reactions.
The success in lowering the nucleation delay for Atomic Layer Deposition (ALD) of Ru on carbon surfaces is mitigated by constructive pretreatments resulting enhancement of C-O functionality. Treatment of the carbon papers (CP) allowed Ru species deposition for minimum number of ALD cycles (25 cycles) with good conformality. The development of electrocatalysts from single atoms to nanoparticles (NPs) on conductive supports with low metal loadings, thus improving performance, is essential in electrocatalysis. For alkaline hydrogen evolution reaction, ALD decorated CPs with Ru exhibit low onset potentials of approximate to 4.7 mV versus reversable hydrogen electrode (RHE) (at 10 mA cm(-2)) and a high turnover frequency of 1.92 H-2 s(-1) at 30 mV versus RHE. The Ru decorated CPs show comparable to higher catalytic activity than of Platinum (Pt) decorated CP also developed by ALD. The current representation of unfamiliar catalytic activities of Ru active centers developed by ALD, pave a bright and sustainable path for energy conversion reactions.

Description

Citation

Small. 2023, vol. 19, issue 32, p. 1-8.
https://onlinelibrary.wiley.com/doi/10.1002/smll.202300974

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial 4.0 International
Citace PRO