Enhancing Security Monitoring with AI-Enabled Log Collection and NLP Modules on a Unified Open Source Platform

but.event.date25.04.2023cs
but.event.titleSTUDENT EEICT 2023cs
dc.contributor.authorSafonov, Yehor
dc.contributor.authorZernovic, Michal
dc.date.accessioned2023-07-17T05:57:35Z
dc.date.available2023-07-17T05:57:35Z
dc.date.issued2023cs
dc.description.abstractThe number of computer attacks continues to increasedaily, posing significant challenges to modern securityadministrators to provide security in their organizations. Withthe rise of sophisticated cyber threats, it is becoming increasinglydifficult to detect and prevent attacks using traditional securitymeasures. As a result, security monitoring solutions such asSecurity Information and Event Management (SIEM) have becomea critical component of modern security infrastructures. However,these solutions still face limitations, and administrators areconstantly seeking ways to enhance their capabilities to effectivelyprotect their cyber units. This paper explores how advanced deeplearning techniques can help boost security monitoring capabilitiesby utilizing them throughout all stages of log processing. Thepresented platform has the potential to fundamentally transformand bring about a significant change in the field of securitymonitoring with advanced AI capabilities. The study includes adetailed comparison of modern log collection platforms, with thegoal of determining the most effective approach. The key benefitsof the proposed solution are its scalability and multipurposenature. The platform integrates an open source solution andallows the organization to connect any event log sources or theentire SIEM solution, normalize and filter data, and use thisdata to train and deploy different AI models to perform differentsecurity monitoring tasks more efficiently.en
dc.formattextcs
dc.format.extent217-221cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings II of the 29st Conference STUDENT EEICT 2023: Selected papers. s. 217-221. ISBN 978-80-214-6154-3cs
dc.identifier.doi10.13164/eeict.2023.217
dc.identifier.isbn978-80-214-6154-3
dc.identifier.issn2788-1334
dc.identifier.urihttp://hdl.handle.net/11012/210694
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings II of the 29st Conference STUDENT EEICT 2023: Selected papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectArtificial intelligenceen
dc.subjectdeep learningen
dc.subjectFluentden
dc.subjectlogcollectionen
dc.subjectlog processingen
dc.subjectLogstashen
dc.subjectsecurity monitoringen
dc.subjectSIEMen
dc.titleEnhancing Security Monitoring with AI-Enabled Log Collection and NLP Modules on a Unified Open Source Platformen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
217_EEICT_selected.pdf
Size:
3.53 MB
Format:
Adobe Portable Document Format
Description: