Multiple Instance Learning Framework Used For Ecg Premature Contraction Localization
Loading...
Date
Authors
Novotna, Petra
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
ORCID
Abstract
We propose the model combining convolutional neural network with multiple instancelearning in order to localize the premature atrial contraction and premature ventricular contraction.The model is based on ResNet architecture modified for 1D signal processing. Model was trainedon China Physiological Signal Challenge 2018 database extended by manually labeled ground truthpositions of premature complexes. The presented method did not reach satisfying results in PAClocalization (with dice = 0.127 for avg-pooling implementation). On the other hand, results of localizationof PVCs were comparable with other published studies (with dice = 0.952 for avg-poolingimplementation).
Description
Citation
Proceedings I of the 27st Conference STUDENT EEICT 2021: General papers. s. 311-315. ISBN 978-80-214-5942-7
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
