Adaptive stochastic management of the storage function for a large open reservoir using an artificial intelligence method

Loading...
Thumbnail Image

Authors

Kozel, Tomáš
Starý, Miloš

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Journal of Hydrology and Hydromechanics
Altmetrics

Abstract

The design and evaluation of algorithms for adaptive stochastic control of reservoir function of the water reservoir using artificial intelligence methods (learning fuzzy model and neural networks) are described in this article. This procedure was tested on an artificial reservoir. Reservoir parameters have been designed to cause critical disturbances during the control process, and therefore the influences of control algorithms can be demonstrated in the course of controlled outflow of water from the reservoir. The results of the stochastic adaptive models were compared. Further, stochastic model results were compared with a resultant course of management obtained using the method of classical optimisation (differential evolution), which used stochastic forecast data from real series (100% forecast). Finally, the results of the dispatcher graph and adaptive stochastic control were compared. Achieved results of adaptive stochastic management provide inspiration for continuing research in the field.
The design and evaluation of algorithms for adaptive stochastic control of reservoir function of the water reservoir using artificial intelligence methods (learning fuzzy model and neural networks) are described in this article. This procedure was tested on an artificial reservoir. Reservoir parameters have been designed to cause critical disturbances during the control process, and therefore the influences of control algorithms can be demonstrated in the course of controlled outflow of water from the reservoir. The results of the stochastic adaptive models were compared. Further, stochastic model results were compared with a resultant course of management obtained using the method of classical optimisation (differential evolution), which used stochastic forecast data from real series (100% forecast). Finally, the results of the dispatcher graph and adaptive stochastic control were compared. Achieved results of adaptive stochastic management provide inspiration for continuing research in the field.

Description

Citation

Journal of Hydrology and Hydromechanics. 2019, vol. 64, issue 4, p. 314-321.
http://www.uh.sav.sk/Portals/16/vc_articles/2019_67_4_Kozel_314.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported
Citace PRO