Discrete Riccati matrix equation and the order preserving property

dc.contributor.authorŠtoudková Růžičková, Vieracs
dc.coverage.issue6cs
dc.coverage.volume618cs
dc.date.accessioned2021-09-27T14:52:07Z
dc.date.available2021-09-27T14:52:07Z
dc.date.issued2021-02-03cs
dc.description.abstractIt is known that if a symmetric matrix differential equation has the order preserving property and the matrix dimension is at least 2, then this equation is the Riccati matrix differential equation (see A.N. Stokes, A special property of the matrix Riccati equation, Bull. Austral. Math. Soc., 1974). In this paper we prove that a similar statement holds for discrete matrix equations as well. In the proof we use a new approach, in which we extend a discrete function to a continuous one by using the iteration theory and then apply the known result for the continuous case.en
dc.description.embargo2023-02-03cs
dc.formattextcs
dc.format.extent58-75cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationLINEAR ALGEBRA AND ITS APPLICATIONS. 2021, vol. 618, issue 6, p. 58-75.en
dc.identifier.doi10.1016/j.laa.2021.01.021cs
dc.identifier.issn0024-3795cs
dc.identifier.other168953cs
dc.identifier.urihttp://hdl.handle.net/11012/201671
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofLINEAR ALGEBRA AND ITS APPLICATIONScs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0024379521000409cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0024-3795/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectRiccati matrix equationen
dc.subjectorder preserving propertyen
dc.subjectsymplectic matrixen
dc.subjectiterationen
dc.titleDiscrete Riccati matrix equation and the order preserving propertyen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionacceptedVersionen
sync.item.dbidVAV-168953en
sync.item.dbtypeVAVen
sync.item.insts2023.02.03 00:52:49en
sync.item.modts2023.02.03 00:14:23en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
S0024379521000409_accepted.pdf
Size:
371.72 KB
Format:
Adobe Portable Document Format
Description:
S0024379521000409_accepted.pdf