Charakterizace chodců ve videu

Loading...
Thumbnail Image

Date

Authors

Studená, Zuzana

Mark

C

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Táto práca sa zaoberá získavaním informácií o chodcoch, ktorí sú zachytení pomocou statických vonkajších kamier umiestnených na verejných vonkajších alebo vnútorných priestranstvách. Cieľom je za použitia konvolučných neurónových sietí získať, čo najväčšie množstvo informácií ako je napríklad pohlavie, vek a typ oblečenia, doplnky, módny štýl alebo celková charakteristika osoby. Časť práce pozostáva z tvorby novej dátovej sady, ktorá zachytáva chodcov a k nim informácie o pohlaví, veku a módnom štýle osoby. Ďalšou časťou práce je návrh a implementácia konvolučných neurónových sietí, ktoré klasifikujú spomínané charakteristiky chodcov. Neurónové siete vyhodnocujú vstupné obrázky chodcov v dátových sadách PETA, FashionStyle14 a BUT atribúty chodcov. Vykonané experimenty nad dátovými sadami PETA a FashionStyle porovnávajú moje výsledky rôznych konvolučných neurónových sietí s publikáciami. Ďalšie experimenty sú ukázané na novo vytvorenej dátovej sade BUT atribúty chodcov.
This work deals with obtaining pedestrian information, which are captured by static, external cameras located in public, outdoor or indoor spaces. The aim is to obtain as much information as possible. Information such as gender, age and type of clothing, accessories, fashion style, or overall personality are obtained using using convolutional neural networks. One part of the work consists of creating a new dataset that captures pedestrians and includes information about the person's sex, age, and fashion style. Another part of the thesis is the design and implementation of convolutional neural networks, which classify the mentioned pedestrian characteristics. Neural networks evaluate pedestrian input images in PETA, FashionStyle14 and BUT Pedestrian Attributes datasets. Experiments performed over the PETA and FashionStyle datasets compare my results to various convolutional neural networks described in publications. Further experiments are shown on created BUT data set of pedestrian attributes.

Description

Citation

STUDENÁ, Z. Charakterizace chodců ve videu [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2019.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Inteligentní systémy

Comittee

doc. Ing. František Zbořil, Ph.D. (předseda) doc. Mgr. Adam Rogalewicz, Ph.D. (místopředseda) doc. Ing. Michal Bidlo, Ph.D. (člen) doc. Ing. Lukáš Burget, Ph.D. (člen) Ing. František Grézl, Ph.D. (člen) Prof. RNDr. Mária Lucká, Ph.D. (člen)

Date of acceptance

2019-06-17

Defence

Studentka nejprve prezentovala výsledky, kterých dosáhla v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Studentka následně odpověděla na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studentky na položené otázky rozhodla práci hodnotit stupněm C. Otázky u obhajoby: Je rozdělení věkových kategorií na třídy (1+, 18+, 30+, 45+, 60+) ze socioekonomického hlediska dostatečné? Čím si vysvětlujete nižší hodnotu mA vaší metody (tabulka 7.1), když jsou všechny ostatní metriky (kromě Recall ) vyšší než u dalších metod? Je to způsobeno právě nižší hodnotou Recall ? Byli by výsledky lepší, kdyby byla kvalita použitých fotek/videí vyšší, byla by přesnost lepší? Kdo Vám anotace vytvářela kdo je ověřoval?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO