Experimental Study of Slag Changes during the Very Early Stages of Its Alkaline Activation

Loading...
Thumbnail Image

Authors

Bílek, Vlastimil
Hrubý, Petr
Hrubá, Valeriia
Koplík, Jan
Křikala, Jakub
Marko, Michal
Hajzler, Jan
Kalina, Lukáš

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

The very early stages of alkaline activation of slag control its rheology and setting, but also affect its hydration, which occurs later. Simultaneously, these parameters are dictated by the nature and dose of the alkaline activator. Therefore, we investigated and compared the changes in slag particles (SEM, BET, laser diffraction), as well as in the pore solution composition (ICP–OES), pH, and conductivity, of alkali-activated slag (AAS) pastes containing the three most common sodium activators (waterglass, hydroxide, and carbonate) and water during the first 24 h of its activation. To ensure the best possible comparability of the pastes, a fairly nontraditional mixture design was adopted, based on the same concentration of Na+ (4 mol/dm3) and the same volume fraction of slag in the paste (0.50). The results were correlated with the pastes’ hydration kinetics (isothermal calorimetry), structural build-up (oscillatory rheology), and setting times (Vicat). Great differences were observed in most of these properties, in the formation of hydration products, and in the composition of the pore solution for each activator. The results emphasize the role of the anionic groups in the activators and of the pH, which help predict the sample’s behavior based on its calorimetric curve, and offer data for further comparisons and for the modelling of AAS hydration for specific activators.
The very early stages of alkaline activation of slag control its rheology and setting, but also affect its hydration, which occurs later. Simultaneously, these parameters are dictated by the nature and dose of the alkaline activator. Therefore, we investigated and compared the changes in slag particles (SEM, BET, laser diffraction), as well as in the pore solution composition (ICP–OES), pH, and conductivity, of alkali-activated slag (AAS) pastes containing the three most common sodium activators (waterglass, hydroxide, and carbonate) and water during the first 24 h of its activation. To ensure the best possible comparability of the pastes, a fairly nontraditional mixture design was adopted, based on the same concentration of Na+ (4 mol/dm3) and the same volume fraction of slag in the paste (0.50). The results were correlated with the pastes’ hydration kinetics (isothermal calorimetry), structural build-up (oscillatory rheology), and setting times (Vicat). Great differences were observed in most of these properties, in the formation of hydration products, and in the composition of the pore solution for each activator. The results emphasize the role of the anionic groups in the activators and of the pH, which help predict the sample’s behavior based on its calorimetric curve, and offer data for further comparisons and for the modelling of AAS hydration for specific activators.

Description

Citation

Materials. 2021, vol. 15, issue 1, p. 1-21.
https://www.mdpi.com/1996-1944/15/1/231

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO