Durability of alkali-activated concretes containing cement kiln by-pass dust

Loading...
Thumbnail Image

Authors

Bílek, Vlastimil
Bílek, Vlastimil
Kalina, Lukáš
Khestl, Filip
Palovčík, Jakub
Šimonová, Hana

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing
Altmetrics

Abstract

The aim of the presented work was evaluation of an effect of various conditions on the performance of two developed concretes based on alkali-activated slag and cement kiln by-pass dust (BD). BD was used as a partial replacement of natural aggregates while slag as an aluminosilicate precursor activated by a combination of waterglass and sodium hydroxide solution (resulting silicate modulus of 0.5). The concretes differed only in an activator dose which was 4 and 6% of Na2O with respect to the slag weight. The prepared specimens were sealed-cured for the first 28 days and then their resistance to freeze-thaw cycles and aggressive solutions (ammonium nitrate, acetic acid and sulphates) was tested. Evolution of dynamic modulus showed that both concretes resisted well to freeze-thaw cycles as well as to most solutions, where their dynamic modulus tended to increase in most cases or did not change significantly. Only the concrete with 4% Na2O showed poor resistance to acetic acid solution as the specimens completely disintegrated until 50 days.
The aim of the presented work was evaluation of an effect of various conditions on the performance of two developed concretes based on alkali-activated slag and cement kiln by-pass dust (BD). BD was used as a partial replacement of natural aggregates while slag as an aluminosilicate precursor activated by a combination of waterglass and sodium hydroxide solution (resulting silicate modulus of 0.5). The concretes differed only in an activator dose which was 4 and 6% of Na2O with respect to the slag weight. The prepared specimens were sealed-cured for the first 28 days and then their resistance to freeze-thaw cycles and aggressive solutions (ammonium nitrate, acetic acid and sulphates) was tested. Evolution of dynamic modulus showed that both concretes resisted well to freeze-thaw cycles as well as to most solutions, where their dynamic modulus tended to increase in most cases or did not change significantly. Only the concrete with 4% Na2O showed poor resistance to acetic acid solution as the specimens completely disintegrated until 50 days.

Description

Citation

IOP Conference Series: Materials Science and Engineering. 2021, vol. 1039, p. 1-8.
https://iopscience.iop.org/article/10.1088/1757-899X/1039/1/012012

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported
Citace PRO