Design of Linear Quadratic Regulator (LQR) Based on Genetic Algorithm for Inverted Pendulum

dc.contributor.authorMarada, Tomas
dc.contributor.authorMatousek, Radomil
dc.contributor.authorZuth, Daniel
dc.coverage.issue1cs
dc.coverage.volume23cs
dc.date.accessioned2019-06-26T10:18:10Z
dc.date.available2019-06-26T10:18:10Z
dc.date.issued2017-06-01cs
dc.description.abstractOne of the crucial problems in the dynamics and automatic control theory is balancing of an invertedpendulum robot by moving a cart along a horizontal path. This task is often used as a benchmark for di erentmethod comparison. In the practical use of the LQR method, the key problem is how to choose weight matricesQ and R correctly. To obtain satisfying results the experiments should be repeated many times with di erentparameters of weight matrices. These LQR parameters can be tuned by a Genetic Algorithm (GA) techniquefor getting better results. In our paper, the LQR parameters weight matrices Q and R which were tuned usingthe Genetic Algorithm. The simulations of the control problem are designed using MATLAB script code andMATLAB Simulink on an inverted pendulum model. The results show that the Genetic Algorithm is suitablefor tuning the parameters to give an optimal response. The control problem of the inverted pendulum was solvedsuccessfully.en
dc.formattextcs
dc.format.extent149-156cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMendel. 2017 vol. 23, č. 1, s. 149-156. ISSN 1803-3814cs
dc.identifier.doi10.13164/mendel.2017.1.149en
dc.identifier.issn2571-3701
dc.identifier.issn1803-3814
dc.identifier.urihttp://hdl.handle.net/11012/179211
dc.language.isoencs
dc.publisherInstitute of Automation and Computer Science, Brno University of Technologycs
dc.relation.ispartofMendelcs
dc.relation.urihttps://mendel-journal.org/index.php/mendel/article/view/66cs
dc.rights.accessopenAccessen
dc.subjectInverted pendulumen
dc.subjectLinear Quadratic regulator (LQR)en
dc.subjectGenetic algorithmen
dc.titleDesign of Linear Quadratic Regulator (LQR) Based on Genetic Algorithm for Inverted Pendulumen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
66-Article Text-121-1-10-20190219.pdf
Size:
1.64 MB
Format:
Adobe Portable Document Format
Description:
Collections