ON NON-OSCILLATION FOR TWO DIMENSIONAL SYSTEMS OF NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONS

dc.contributor.authorOpluštil, Zdeněkcs
dc.coverage.issue2cs
dc.coverage.volume25cs
dc.date.accessioned2025-04-11T07:56:05Z
dc.date.available2025-04-11T07:56:05Z
dc.date.issued2024-11-28cs
dc.description.abstractThe paper studies the non-oscillatory properties of two-dimensional systems of non-linear differential equations u ' = g(t)|v|1/alpha sgn v, v ' = -p(t)|u|(alpha)sgn u, where the functions g: [0, +infinity[-> [0, +infinity[, p: [0, +infinity[-> & Ropf; are locally integrable and alpha > 0. We are especially interested in the case of integral(+infinity)g(s) ds < +infinity. In the paper, new non-oscillation criteria are established. Among others, they generalize well-known results for linear systems as well as second order linear and also half-linear differential equations. The criteria presented complement the results of Hartman-Wintner's type for the system in question.en
dc.formattextcs
dc.format.extent943-954cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMiskolc Mathematical Notes (electronic version). 2024, vol. 25, issue 2, p. 943-954.en
dc.identifier.doi10.18514/MMN.2024.4420cs
dc.identifier.issn1787-2413cs
dc.identifier.orcid0000-0003-4422-2951cs
dc.identifier.other194057cs
dc.identifier.researcheridF-1908-2016cs
dc.identifier.scopus27568059700cs
dc.identifier.urihttps://hdl.handle.net/11012/250883
dc.language.isoencs
dc.publisherUNIV MISKOLC INST MATHcs
dc.relation.ispartofMiskolc Mathematical Notes (electronic version)cs
dc.relation.urihttps://real.mtak.hu/210795/cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1787-2413/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjecttwo dimensional system of non-linear differential equationsen
dc.subjectoscillatory propertiesen
dc.titleON NON-OSCILLATION FOR TWO DIMENSIONAL SYSTEMS OF NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONSen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-194057en
sync.item.dbtypeVAVen
sync.item.insts2025.04.11 09:56:05en
sync.item.modts2025.04.11 09:33:29en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4420.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format
Description:
file 4420.pdf