Light-Controlled Electric Stimulation with Organic Electrolytic Photocapacitors Achieves Complex Neuronal Network Activation: Semi-Chronic Study in Cortical Cell Culture and Rat Model

dc.contributor.authorNowakowska, Martacs
dc.contributor.authorJakešová, Mariecs
dc.contributor.authorSchmidt, Tonycs
dc.contributor.authorOpančar, Aleksandarcs
dc.contributor.authorPolz, Mathiascs
dc.contributor.authorReimer, Robertcs
dc.contributor.authorFuchs, Juliacs
dc.contributor.authorPatz, Silkecs
dc.contributor.authorZiesel, Danielcs
dc.contributor.authorScheruebel, Susannecs
dc.contributor.authorKornmueller, Karincs
dc.contributor.authorRienmüller, Theresacs
dc.contributor.authorDerek, Vedrancs
dc.contributor.authorGlowacki, Eric Danielcs
dc.contributor.authorSchindl, Rainercs
dc.contributor.authorÜçal, Muammercs
dc.coverage.issue29cs
dc.coverage.volume13cs
dc.date.accessioned2025-03-26T11:43:21Z
dc.date.available2025-03-26T11:43:21Z
dc.date.issued2024-08-13cs
dc.description.abstractNeurostimulation employing photoactive organic semiconductors offers an appealing alternative to conventional techniques, enabling targeted action and wireless control through light. In this study, organic electrolytic photocapacitors (OEPC) are employed to investigate the effects of light-controlled electric stimulation on neuronal networks in vitro and in vivo. The interactions between the devices and biological systems are characterized. Stimulation of primary rat cortical neurons results in an elevated expression of c-Fos within a mature neuronal network. OEPC implantation for three weeks and subsequent stimulation of the somatosensory cortex leads to an increase of c-Fos in neurons at the stimulation site and in connected brain regions (entorhinal cortex, hippocampus), both in the ipsi- and contralateral hemispheres. Reactivity of glial and immune cells after semi-chronic implantation of OEPC in the rat brain is comparable to that of surgical controls, indicating minimal foreign body response. Device functionality is further substantiated through retained charging dynamics following explantation. OEPC-based, light-controlled electric stimulation has a significant impact on neural responsiveness. The absence of detrimental effects on both the brain and device encourages further use of OEPC as cortical implants. These findings highlight its potential as a novel mode of neurostimulation and instigate further exploration into applications in fundamental neuroscience. Wireless cortical stimulation is an attractive alternative to standard neurostimulation methods. Organic photoactive semiconductors can transduce light into electric signal, even in ultrathin layers, which can be used to stimulate neurons. In this study, light-based stimulation activated complex neuronal networks in vitro and in vivo, including deep brain regions. The devices proved safe and stable over three weeks of implantation. imageen
dc.formattextcs
dc.format.extent1-19cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAdvanced Healthcare Materials. 2024, vol. 13, issue 29, p. 1-19.en
dc.identifier.doi10.1002/adhm.202401303cs
dc.identifier.issn2192-2640cs
dc.identifier.orcid0000-0003-3471-1110cs
dc.identifier.orcid0000-0002-0280-8017cs
dc.identifier.other189744cs
dc.identifier.urihttps://hdl.handle.net/11012/250205
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofAdvanced Healthcare Materialscs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/adhm.202401303cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2192-2640/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectbioelectronicsen
dc.subjectcortical stimulationen
dc.subjectc-Fosen
dc.subjectexcitabilityen
dc.subjectimmunohistochemistryen
dc.subjectorganic semiconductorsen
dc.subjectwireless stimulationen
dc.titleLight-Controlled Electric Stimulation with Organic Electrolytic Photocapacitors Achieves Complex Neuronal Network Activation: Semi-Chronic Study in Cortical Cell Culture and Rat Modelen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-189744en
sync.item.dbtypeVAVen
sync.item.insts2025.03.26 12:43:20en
sync.item.modts2025.03.26 10:32:18en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Bioelektronické materiály a systémycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024Nowakowska.pdf
Size:
23.29 MB
Format:
Adobe Portable Document Format
Description:
file 2024Nowakowska.pdf