Application of Computer Graphics Flow Visualization Methods in Vortex Rope Investigations

Loading...
Thumbnail Image

Authors

Urban, Ondřej
Kurková, Michaela
Rudolf, Pavel

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

Computer graphics visualization techniques for application on data from Computational Fluid Dynamics (CFD) simulations of the vortex rope, a phenomenon present in hydraulic turbines operating in off-design conditions, were devised. This included not only objects for visualization (what to visualize) but also methods of the visualization itself (how to do it). By means of advanced methods based particularly on volume rendering of Eulerian fields in combination with Lagrangian objects, various phenomena were captured, such as the motion of the vortex rope or the backflow zone. The data came from simulations using a scale-resolving hybrid turbulence model, the Stress-Blended Eddy Simulation. In such detailed simulations and other applications involving complex three-dimensional structures, proper visualization methods are needed to leverage the content captured in the resultant data.
Computer graphics visualization techniques for application on data from Computational Fluid Dynamics (CFD) simulations of the vortex rope, a phenomenon present in hydraulic turbines operating in off-design conditions, were devised. This included not only objects for visualization (what to visualize) but also methods of the visualization itself (how to do it). By means of advanced methods based particularly on volume rendering of Eulerian fields in combination with Lagrangian objects, various phenomena were captured, such as the motion of the vortex rope or the backflow zone. The data came from simulations using a scale-resolving hybrid turbulence model, the Stress-Blended Eddy Simulation. In such detailed simulations and other applications involving complex three-dimensional structures, proper visualization methods are needed to leverage the content captured in the resultant data.

Description

Citation

Energies. 2021, vol. 14, issue 3, p. 1-21.
https://www.mdpi.com/1996-1073/14/3/623

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO