Stress Measures in SOM Learning

dc.contributor.authorKrbcova, Zuzana
dc.coverage.issue1cs
dc.coverage.volume24cs
dc.date.accessioned2019-06-26T10:18:36Z
dc.date.available2019-06-26T10:18:36Z
dc.date.issued2018-06-01cs
dc.description.abstractVarious stress measures can be used in generalized version of Sammon’s mapping. Kohonen SOM with iterative or batch learning is a standard tool for data self-organization, too. Our method applies stress functions to pattern relationships in SOM and converts batch learning to discrete optimization task. Due to NP–completeness of SOM learning, optimization heuristics have to be used. Simulated annealing making use of Lévy flights is the recommended heuristics for this task.en
dc.formattextcs
dc.format.extent107-112cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMendel. 2018 vol. 24, č. 1, s. 107-112. ISSN 1803-3814cs
dc.identifier.doi10.13164/mendel.2018.1.107en
dc.identifier.issn2571-3701
dc.identifier.issn1803-3814
dc.identifier.urihttp://hdl.handle.net/11012/179231
dc.language.isoencs
dc.publisherInstitute of Automation and Computer Science, Brno University of Technologycs
dc.relation.ispartofMendelcs
dc.relation.urihttps://mendel-journal.org/index.php/mendel/article/view/30cs
dc.rights.accessopenAccessen
dc.subjectSOMen
dc.subjectmetric spaceen
dc.subjectstress functionen
dc.subjectoptimization heuristicsen
dc.titleStress Measures in SOM Learningen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
30-Article Text-73-1-10-20190218.pdf
Size:
653.37 KB
Format:
Adobe Portable Document Format
Description:
Collections