Supervised Segmentation For 3D Slicer
but.event.date | 27.04.2017 | cs |
but.event.title | Student EEICT 2017 | cs |
dc.contributor.author | Chalupa, Daniel | |
dc.date.accessioned | 2020-05-07T09:40:29Z | |
dc.date.available | 2020-05-07T09:40:29Z | |
dc.date.issued | 2017 | cs |
dc.description.abstract | The purpose of this work is to introduce an extendable framework for training and usage of machine learning algorithms. This framework is bundled in an extension for 3D Slicer that is to be used for medical images segmentation. An example usage of the extension is also provided. | en |
dc.format | text | cs |
dc.format.extent | 296-298 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings of the 23st Conference STUDENT EEICT 2017. s. 296-298. ISBN 978-80-214-5496-5 | cs |
dc.identifier.isbn | 978-80-214-5496-5 | |
dc.identifier.uri | http://hdl.handle.net/11012/187112 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings of the 23st Conference STUDENT EEICT 2017 | en |
dc.relation.uri | http://www.feec.vutbr.cz/EEICT/ | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | 3D Slicer | en |
dc.subject | C++ | en |
dc.subject | extension | en |
dc.subject | machine learning | en |
dc.subject | optimization | en |
dc.subject | segmentation | en |
dc.subject | tomography | en |
dc.title | Supervised Segmentation For 3D Slicer | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 296_eeict2017.pdf
- Size:
- 618 KB
- Format:
- Adobe Portable Document Format
- Description: