Supervised Segmentation For 3D Slicer

but.event.date27.04.2017cs
but.event.titleStudent EEICT 2017cs
dc.contributor.authorChalupa, Daniel
dc.date.accessioned2020-05-07T09:40:29Z
dc.date.available2020-05-07T09:40:29Z
dc.date.issued2017cs
dc.description.abstractThe purpose of this work is to introduce an extendable framework for training and usage of machine learning algorithms. This framework is bundled in an extension for 3D Slicer that is to be used for medical images segmentation. An example usage of the extension is also provided.en
dc.formattextcs
dc.format.extent296-298cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings of the 23st Conference STUDENT EEICT 2017. s. 296-298. ISBN 978-80-214-5496-5cs
dc.identifier.isbn978-80-214-5496-5
dc.identifier.urihttp://hdl.handle.net/11012/187112
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings of the 23st Conference STUDENT EEICT 2017en
dc.relation.urihttp://www.feec.vutbr.cz/EEICT/cs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subject3D Sliceren
dc.subjectC++en
dc.subjectextensionen
dc.subjectmachine learningen
dc.subjectoptimizationen
dc.subjectsegmentationen
dc.subjecttomographyen
dc.titleSupervised Segmentation For 3D Sliceren
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
296_eeict2017.pdf
Size:
618 KB
Format:
Adobe Portable Document Format
Description: