Blastfurnace Hybrid Cement with Waste Water Glass Activator: Alkali-Silica Reaction Study
Loading...
Date
Authors
Kalina, Lukáš
Bílek, Vlastimil
Bradová, Lada
Topolář, Libor
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Altmetrics
Abstract
Hybrid systems represent a new sustainable type of cement combining the properties of ordinary Portland cement and alkali-activated materials. In this study, a hybrid system based on blast furnace slag and Portland clinker was investigated. The economic aspects and appropriate waste management resulted in the usage of technological waste from water glass production (WG-waste) as an alkaline activator. Although the Portland clinker content was very low, the incorporation of this by-product significantly improved the mechanical properties. Nevertheless, the high amount of alkalis in combination with possible reactive aggregates raises concerns about the risk of alkali–silica reaction (ASR). The results obtained from expansion measurement, the uranyl acetate fluorescence method, and microstructure characterization revealed that the undesirable effects of alkali–silica reaction in mortars based on the hydration of hybrid cement are minimal.
Hybrid systems represent a new sustainable type of cement combining the properties of ordinary Portland cement and alkali-activated materials. In this study, a hybrid system based on blast furnace slag and Portland clinker was investigated. The economic aspects and appropriate waste management resulted in the usage of technological waste from water glass production (WG-waste) as an alkaline activator. Although the Portland clinker content was very low, the incorporation of this by-product significantly improved the mechanical properties. Nevertheless, the high amount of alkalis in combination with possible reactive aggregates raises concerns about the risk of alkali–silica reaction (ASR). The results obtained from expansion measurement, the uranyl acetate fluorescence method, and microstructure characterization revealed that the undesirable effects of alkali–silica reaction in mortars based on the hydration of hybrid cement are minimal.
Hybrid systems represent a new sustainable type of cement combining the properties of ordinary Portland cement and alkali-activated materials. In this study, a hybrid system based on blast furnace slag and Portland clinker was investigated. The economic aspects and appropriate waste management resulted in the usage of technological waste from water glass production (WG-waste) as an alkaline activator. Although the Portland clinker content was very low, the incorporation of this by-product significantly improved the mechanical properties. Nevertheless, the high amount of alkalis in combination with possible reactive aggregates raises concerns about the risk of alkali–silica reaction (ASR). The results obtained from expansion measurement, the uranyl acetate fluorescence method, and microstructure characterization revealed that the undesirable effects of alkali–silica reaction in mortars based on the hydration of hybrid cement are minimal.
Description
Citation
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0001-8127-8175 