Optimizing plastics recycling networks
dc.contributor.author | Aviso, Kathleen B. | cs |
dc.contributor.author | Baquillas, Jonna C. | cs |
dc.contributor.author | Chiu, Anthony S. F. | cs |
dc.contributor.author | Jiang, Peng | cs |
dc.contributor.author | Fan, Yee Van | cs |
dc.contributor.author | Varbanov, Petar Sabev | cs |
dc.contributor.author | Klemeš, Jiří | cs |
dc.contributor.author | Tan, Raymond R | cs |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 14 | cs |
dc.date.accessioned | 2024-02-15T09:45:19Z | |
dc.date.available | 2024-02-15T09:45:19Z | |
dc.date.issued | 2023-06-14 | cs |
dc.description.abstract | Plastic pollution is a serious sustainability issue facing the global community. Fragments of macroplastics and microplastics pollute terrestrial and aquatic ecosystems, while nanoplastics can also degrade air quality. The recent COVID-19 pandemic also exacerbated the problem. Large-scale commercial use of plastics recycling technologies is hindered by various socio-economic barriers. In particular, cross-contamination of mixed plastic streams is prevalent due to imperfect waste segregation. The concept of Plastics Recycling Networks is intro-duced to facilitate planning of reverse supply chains using optimization models. In this work, basic Linear Programming and Mixed-Integer Linear Programming models are developed for matching sources of waste plastic with plastic recycling plants within Plastics Recycling Networks. These models allocate streams while considering the ability of recycling plants to tolerate contaminants. Two illustrative case studies are analyzed to demonstrate the effectiveness of the models, and policy implications for mitigation of plastic pollution are dis-cussed. These models enable planning of networks with some tolerance for contaminants in plastic waste, and can be the basis for developing new variants to handle additional real world aspects. | en |
dc.format | text | cs |
dc.format.extent | 8 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Cleaner Engineering and Technology. 2023, vol. 14, issue 1, 8 p. | en |
dc.identifier.doi | 10.1016/j.clet.2023.100632 | cs |
dc.identifier.issn | 2666-7908 | cs |
dc.identifier.orcid | 0000-0001-5514-0260 | cs |
dc.identifier.orcid | 0000-0001-5261-1645 | cs |
dc.identifier.orcid | 0000-0002-7450-7029 | cs |
dc.identifier.other | 187291 | cs |
dc.identifier.researcherid | H-1088-2019 | cs |
dc.identifier.researcherid | B-8954-2009 | cs |
dc.identifier.researcherid | B-7291-2009 | cs |
dc.identifier.scopus | 57189519052 | cs |
dc.identifier.scopus | 6603469420 | cs |
dc.identifier.scopus | 56903012000 | cs |
dc.identifier.uri | https://hdl.handle.net/11012/244968 | |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartof | Cleaner Engineering and Technology | cs |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S266679082300037X?via%3Dihub | cs |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2666-7908/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | cs |
dc.subject | Circular economy | en |
dc.subject | Microplastics | en |
dc.subject | Plastic waste | en |
dc.subject | Process integration | en |
dc.subject | Reverse logistics | en |
dc.title | Optimizing plastics recycling networks | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-187291 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2024.02.15 10:45:19 | en |
sync.item.modts | 2024.02.15 10:13:20 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Laboratoř integrace procesů | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1s2.0S266679082300037Xmain.pdf
- Size:
- 877.12 KB
- Format:
- Adobe Portable Document Format
- Description:
- file 1s2.0S266679082300037Xmain.pdf